
TAM API

Developer Manual

This document gives an overview over the different components of the application programming inter-
face for Triamec servo drives.

Document SWNET_TamApiDeveloperManual_EP
Version 049, 2024-08-02
Source Q:\doc\Software\SWNET\SWNET_TamApiDeveloperManual\
Destination T:\doc\Software\
Owner chm www.triamec.com

Figure 1: The TAM architecture.

The Triamec Advanced Motion solution provides fast digital servo drives, the Tria-Link real-time communication and
a sophisticated software environment. Applications are built on top of the .NET framework and the TAM API. Cus -
tom code can be downloaded and run in real-time on the servo drive using the Tama virtual machine.

Computer / Controller

Application

.NET

TAM API

TamaVM
Firmware

C#/Tama
Program

Servo-Drive

TamaVM
Firmware

C#/Tama
Program

Servo-Drive

Tria-Link

Tria-Link
Driver .NET

https://www.triamec.com/
https://triamec.com/

Table of Contents

1 Introduction...4

2 Overview..5
2.1 Concepts...5
2.2 NuGet Distribution.....................................6

3 Topology...8

4 Registers...13
4.1 Retrieving Registers..................................15
4.2 Committing...15
4.3 Register Converters..................................16
4.4 Speeding Up With Register Lists...............17

5 Subscriptions and Acquisitions.........................18
5.1 Subscriptions..18
5.2 Setting Up Subscriptions...........................21
5.3 Establishing Data Acquisition....................22
5.4 Acquisitions..23

6 Motion...25
6.1 Drive...25
6.2 Axis...27

6.2.1 Control System Treatment.............28
6.3 Requests...29
6.4 Coupling...31
6.5 Schedules...32

6.5.1 Scheduling Example......................34

7 Real-Time Programming with Tama.................35

8 Configuration...36
8.1 Configuration API......................................36
8.2 Mismatch Resolution................................42

9 Stand-alone Mode..45
9.1 Start-up Process..45

9.2 Start-up API..46

10 Firmware Update...48
10.1 Firmware Infrastructures........................48
10.2 Transferring Firmware............................49

11 Simulation..51
11.1 Simulated Features.................................51
11.2 Creating Simulated Environments..........51

12 Deployment...53

13 Advanced Topics...54
13.1 DevOps Recommendations....................54

13.1.1 Manage NuGet Locations............54
13.1.2 Enable Package Restore in CI.......55

13.2 Setup Protection.....................................55
13.3 Local-Bus Registers.................................56
13.4 Working With Multiple Register Layouts 58

13.4.1 Tagging..59
13.5 Customer Settings..................................60

13.5.1 Preferences.................................61
13.5.2 Triamec Workspace.....................62

13.6 Customer Hardware...............................63
13.6.1 Custom Product Types.................64
13.6.2 Custom Register Layouts.............64
13.6.3 Extending Enumeration Registers

..65
13.6.4 Log Tria-Link Traffic......................67

13.7 Life-Cycle Considerations........................68
13.8 Versioning...69

Glossary..70

References..72

Revision History..73

SWNET_TamApiDeveloperManual_EP049 2024-08-02 2/74

Table of Contents

List of figures
Figure 1: The TAM architecture..1
Figure 2: Software architecture..5
Figure 3: TAM Software NuGet packages...7
Figure 4: TAM Topology classes and interfaces overview...9
Figure 5: Station and device relationship...11
Figure 6: Part of the register tree as viewed by the TAM System Explorer...13
Figure 7: The register classes and interfaces..14
Figure 8: Committing and shadow parameter registers...16
Figure 9: Subscriptions API...19
Figure 10: TAM drive elements..25
Figure 11: Device State Machine..26
Figure 12: Axis State Machine..27
Figure 13: Request API...30
Figure 14: Schedule API..33
Figure 15: Basic TAM Configuration API...37
Figure 16: TAM Configuration hierarchy...39
Figure 17: Configuration Loading and Errors..41
Figure 18: The Resolving Framework...43
Figure 19: The Start-Up API..46
Figure 20: The Firmware API..50
Figure 21: Accessing the local-bus... 56
Figure 22: Get a peripheral device...57
Figure 23: Local-bus register types...58
Figure 24: The most commonly used register tags...60

SWNET_TamApiDeveloperManual_EP049 2024-08-02 3/74

1 Introduction

The TAM software is a collection of libraries, tools and documentation helping customers to integrate
Tria-Link [2] servo drives and other hardware devices in their environments. It does not require any
real-time capabilities of the operating system, as real-time tasks are implemented decentralized on the
individual hardware devices.

The TAM API libraries are built on top of the well recognized .NET framework [3]. Current releases of
the libraries are available for .NET framework 4.6.2 up to .NET framework 4.8. A reduced set of libraries
is available for .NET Compact Framework 3.9 upon request.

The .NET solution stack is also leveraged to ease development of real-time extensions to the drive
firmware, referred to as Tama programs. Build integration and intelligent code completion is provided
out of the box.

Fundamental part of the TAM software is the TAM System Explorer ([6], [7]), central tool for identifica-
tion, setup and configuration of TAM systems. With the TAM System Explorer, the user navigates easily
down to the particular registers of the servo drives. It allows editing parameters and observe signal val -
ues. The built-in oscilloscope allows tracking values with up to 100 kHz. The oscilloscope builds on top
of a reusable acquisition framework.

This document focuses on the TAM API, part of the TAM Software. Typical customer motion applica-
tions build against this API.

Triamec provides various application samples on GitHub. They are organized into two topics, TAM API
samples and Tama program samples.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 4/74

https://github.com/topics/triamec-tama
https://github.com/topics/triamec-tam-api
https://github.com/topics/triamec-tam-api
https://github.com/Triamec

2 Overview

After listing the most important concepts in chapter 2.1, chapter 2.2 outlines how to get hands on the
TAM API in project development.

2.1 Concepts

The TAM API is built on top of the communication focused Tria-Link API. The Tria-Link API is not in the
scope of this document. Moreover, the TAM API is open to alternatives like communication over USB.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 5/74

Figure 2: Software architecture

This diagram shows software components built bottom-up. Red components are provided by Triamec.

A motion application builds on top of the TAM API which presents an object oriented model of the TAM hardware
and its functionalities. The Tria-Link protocol is transparent to the user and not in the scope of this document. Reus-
able GUI controls are offered by the TAM UI library. An extensible plug-in mechanism is provided.

Plugin
Module

TAM API

Tama
Compiler

UI

Tria-Link Protocol

Configuration

Requests

Topology Workspace

Subscriptions

Scope

Explorer

Tria-Link
Driver .NET Framework

OS

Application

Axis Monitor

Registers

Acquisition Firmware Update

Log Viewer

Overview
Concepts

Motion commands are similar to PLCopen. Isochronous data exchange and triggers allows data acquisi-
tion at high rates.

The TAM API is structured into different concepts which are explained in more detail in the following
chapters.

The TAM topology (chapter 3) is a hierarchy of objects mapping the different parts of the system.

The Registers concept (chapter 4) allows configuring, controlling and acquiring data from hardware de-
vices.

Subscriptions (chapter 5) serve as a base functionality for data acquisition, synchronization between
hardware devices (for example for axis coupling) and event observation. The Acquisition API is an easy
to use interface which builds on top of Subscriptions.

Chapter 6 about motion describes how to set up a drive for movement, how to move the axis and error
conditions. Additionally, it describes the scheduling mechanism.

Tama (chapter 7) is the technology allowing extending the firmware of a hardware device with specific
user defined routines for homing, electronic gears, error handling and more.

The TAM Configuration framework (chapter 8) allows persisting the parametrization of a hardware de-
vice, mainly its parametrization registers, in XML.

Parameters may also be persisted directly on the hardware device itself. Moreover, a device may be
configured to a stand-alone mode where all information for start-up is persisted locally. The set-up of
this mode is explained in chapter 9.

The TAM API allows upgrading the firmware over Tria-Link, with some restrictions (chapter 10).

To test software when hardware is not yet ready, an extensible simulation framework (chapter 11) can
help.

The TAM Software comes with a bunch of libraries. Chapter 12 gives an overview and recommendations
for deployment.

Encoder calibration and open- and closed-loop Bode analysis are provided out of the box including
GUIs.

Modules define an extensibility point for rapid application development, integrating in the TAM system
explorer and the TAM configuration framework. This feature is not currently documented, expect for
the reference documentation of the Triamec.Tam.Modules namespace (internal issue 310).

2.2 NuGet Distribution

The TAM API libraries are provided as NuGet packages [12] on nuget.org. Find the release notes in a
separate document [14]. Refer to figure 3 and have a look at the developer samples referred to above
in the introduction. Triamec doesn’t support linking to .dll libraries directly in your projects.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 6/74

https://www.nuget.org/packages?q=Tags%3A%22Triamec%22

Overview
NuGet Distribution

The packages support .NET Framework 4.6.2 and higher, but not yet .NET Core, .NET 5 and higher.
Please contact us if you need support for .NET 5 and higher.

CautionCaution The .NET Standard 2.0 version of some NuGet packages are not supported when working
with Triamec drives.

Prior setting up a greater ecosystem of projects and solutions building upon NuGet functionality, please
read the DevOps Recommendations in section 13.1 below.

NoteNote There are quite some scenarios where installing the TAM Software [13] is a requirement:
- When drivers are required at runtime for access via PCI or USB
- When some GAC libraries are required while using the Triamec.Tam.UI NuGet package.

Updating to a new version of the TAM API is accomplished using the NuGet package manager.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 7/74

Figure 3: TAM Software NuGet packages

The typical requirements for an application project is just the Triamec.Tam.TriaLink NuGet with its dependencies.
The Triamec.Tam.EtherCAT NuGet is currently a subset of the former package. Projects featuring real-time Tama
programs need just to consume the Triamec.Tools.TamaCompiler NuGet in order to get it compiled. The Triamec.-
Tam.UI NuGet is needed when integrating the TAM System Explorer into an application.
3D-party NuGets are drawn in gray and are not part of the TAM Software.

Triamec.Tam.Core

Triamec.Tam.TriaLink

Triamec.Common

Triamec.Tam.UI

Triamec.Tam.EtherCAT

Triamec.Tam.Simulation

Triamec.Tools
.TamaCompiler

McSherry
.SemanticVersioning

Microsoft.Data.SQLite

QuickGraph

Ookii.Dialogs.WinForms

protobuf-net

System.ValueTuple

https://learn.microsoft.com/en-us/nuget/consume-packages/install-use-packages-visual-studio#update-a-package

3 Topology

The TAM Topology is the object-oriented tree containing corresponding instances of all hardware de-
vices with their respective capabilities. The application queries the topology tree to find the hardware
devices it is built for. It informs applications about changes within the tree through an observer pattern.

It is a logical tree of objects related to each other with a has-a association. All objects are instances of
the ITamNodeComposite interface for consistent parent and child navigation. Each node has a Nodes
collection, a ParentNode and two indexers to find child nodes by index or by name. This helps applica-
tions to do generic queries within the tree.

The topology is build on top of the Tria-Link protocol, which itself is supported by different data-link lay-
ers:

 The native Tria-Link token-ring as explained in the Tria-Link user manual.
 A hardware simulation used for early software testing.
 3rd party protocols.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 8/74

Topology

The TAM topology consists of the following classes, all from the Triamec.Tam namespace, listed top
down:

ITamNode

Many classes in the TAM API implement the ITamNode interface. Such a TAM node is addressable by a
unified resource identifier (URI), the Address. This makes it possible to locate them given a URI, using
the FindTamNode method. This can be used to persist references to nodes.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 9/74

Figure 4: TAM Topology classes and interfaces overview

Each instance in the topology is TAM node composite, which can contain further TAM nodes.
Please note the hierarchic levels of the different classes of TAM nodes. The bottom class, TAM
Device, contains registers, a Tama manager and a firmware downloader, among others, which
are themselves again TAM nodes.

TamTopology

TamNodeComposite<ITamNodeComposite, TamSystem>
Class

Methods

AddLocalTamSystem

CreateConfiguration
Dispose (+ 1 overload)
TamTopology

TamAdapter

TamNodeComposite<TamSystem, TamLink>
Sealed Class

Properties

FpgaFirmwareId

HardwareId
HardwareIdDetails
HardwareRevision
HardwareSerialNumber
IsochronousBasePeriod
IsSimulated
Location

PeripheryLayoutId
Role
ShortDescription
SubLocation

Methods

BeginReset

CreateConfiguration
Dispose
EndReset
Reset (+ 1 overload)

Events

ResetCompleted

Resetting

Nested Types

TamLink

TamNodeComposite<TamAdapter, TamStation>
Sealed Class

Properties

BootState

IsBooting
IsLocal
SubscriptionManager
TickTime

Methods

CreateConfiguration

Dispose
Identify
Initialize
ResetAllFaults (+ 1 overload)

Events

Booted

Booting

Nested Types

TamStation

TamNodeComposite<TamLink, TamDevice>
Sealed Class

Properties

FpgaFirmwareId

HardwareId
HardwareIdDetails
HardwareRevision
HardwareSerialNumber
IsochronousBasePeriod
PeripheryLayoutId
ShortDescription

Methods

CreateConfiguration

Dispose
GetGroupAddresses
GetStationAddress

Nested Types

TamDevice

TamNodeComposite<TamStation, ITamDeviceComponent>
Class

Properties

DspFirmwareId

RegisterLayoutId
StateObserverCount
TamaVirtualMachineId

Methods

AbortAllTamRequests

AbortTamRequests
AddStateObserver
CreateConfiguration
Dispose (+ 1 overload)
PrepareForChangingMotorBaseConfiguration
ReadDeviceError (+ 1 overload)
ReadDeviceState (+ 1 overload)

ReadMotorBaseConfiguration (+ 1 overload)
RemoveStateObserver
ResetFault (+ 1 overload)
SetMotorBaseConfiguration (+ 1 overload)

Events

Transition

RegisterComposite

RegisterComponent
Abstract Class

FirmwareDownloader
Abstract Class

TamaNode

TamNodeComposite<T…
Sealed Class

ITamNode
Interface

Properties

Address

CanEditName

Name

ParentNode

ShortDescription

ShortDescriptionOrName

Methods

CreateConfiguration

FindTamNode

Load

Save

Events

NameChanged

ITamDrive

ITamDevice
Interface

ITamScheduler

ITamDevice
Interface

ITamDevice

IRegisterParent
ITamRequestDestination
IDisposable

Interface

IRegisterParent

ITamNodeComposite
Interface

ITamNodeComposite

ITamNode
IEnumerable

Interface

ITamNode<TParent>

ITamNode
Generic Interface

TamNodeComposite<TParent, TChild>
Generic Abstract Class
TamNodeComposite<TParent, TChild>
Generic Class

IDisposable

ITamNodeComposite<TParent, TChild>

TamSystem

TamNodeComposite<TamTopology, TamAdapter>
Sealed Class

Properties

Address

IsSimulated

Methods

AddPalBus

CreateConfiguration
Dispose

ITamDevice

Systems

Topology

Adapters
System

Links

Adapter

Stations

Devices
Station

TamaManager

FirmwareDownloader

Register

Link

Topology

For most nodes, the Name of the node and its parent nodes defines its address. Because names may be
changed, addresses are only unique among one TAM topology and references may become invalid be-
cause of renaming within the topology.

TamTopology

The root of the hierarchy. Starting point of all applications built on top of the TAM API.

TamTopology topology = new();

At the end, all hardware resources must be freed. Therefore, the topology needs to be disposed.

TamSystem

Represents a local or remote control system. This is typically the computer the application runs on.

TamSystem system = topology.AddLocalSystem(DataLinkLayers.TriaLink);

This call sets up access to the drives via a Tria-Link PCI adapter card.

The returned TamSystem instance is added to the topology.

Based on your hardware setup, you may want to pass a different argument:

 DeviceUsb for Triamec devices attached directly via USB.
 TriaLinkUsbObserver if you use the USB plug of a Tria-Link PCI adapter card or a TLU1 box.

In order to access devices attached to a network, use the following API:

var nicName = "Ethernet 3"; // The name of a network interface card as shown e.g. by ipconfig
TamSystem system = topology.ScanNetworkInterfaces(nicName)[0].ParentNode;

For more information about networked access, refer to application note AN123 [15].

Have a look at the Acquisition developer sample to see this code fully integrated.

UsageUsage TamSystem implements IDisposable. However, you must not dispose the instance by
yourself since ownership is taken by topology. This holds for all nodes in the hierarchy.

TamAdapter

Computer hardware connected to external hardware devices using the Tria-Link communication proto-
col.

Examples are the TL PCI card or an USB port. In large TAM systems, more than one adapter card can be
connected to one PC. This may help to distribute traffic to separate Tria-Links, while maintaining the
ability to operate them from the same software in one PC.

TamLink

The communication channel connecting the adapter with hardware devices using the Tria-Link protocol.

Typically, an adapter has exactly one link and plays the role of the master participant in the data-link
layer protocol. Within one link, all hardware devices are synchronized and may communicate with each
other in real-time.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 10/74

https://github.com/Triamec/Acquisition

Topology

Booting
At the beginning, the TAM link does not show the connected hardware devices. Instead, client code
needs to invoke one of the boot procedures:

 Initialize – Find all hardware devices in the Tria-Link, including newly inserted hardware.
 Identify – Find all hardware devices with a legal address. Typically, hardware devices don't have a le-

gal address after power cycle.

TamLink link = system[0][0]; // get the 1st link on the 1st adapter.
link.Initialize();

Booting is a long-running process and may last for a quarter of a minute.

TamStation

Addressable party within the link.

This is typically one-to-one related with a hardware device, but there exist devices seen as multiple sta-
tions. This is the concept of virtual stations. For example, the PCI adapter card TLC100 is seen as two
stations with separate addresses, one to communicate via PCI bus with the PC, and one to communi-
cate with the microprocessor on the card.

TamDevice

The microprocessor in a station, for example, a digital signal processor (DSP).

A station may have zero or one device. For example, Triamec Motion AG servo drives are always
equipped with a microprocessor. I/O-modules and PCI adapter cards may optionally be equipped with a
microprocessor.

All devices have registers (see chapter 4) which they may publish (see chapter 5). Tama programs may
be loaded and executed (see chapter 7).

Each device implements the device state machine (see chapter 6.1).

SWNET_TamApiDeveloperManual_EP049 2024-08-02 11/74

Figure 5: Station and device relationship.

The TAM station is visible in the Tria-Link and ensures communication. The TAM Device, for example a servo drive,
is a CPU implementing the control of the motor.

DeviceDevice

Station

Tx
Rx Tx

Rx

Topology

ITamDrive

Servo drive with typically one axis, capable for doing motion(see chapter 6).

ITamScheduler

TAM device containing Schedules. See section 6.5 for more details.

For more information about the life-cycle of different instances of the above classes and interfaces, see
section 13.7.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 12/74

4 Registers

Registers is the most important concept of the TAM API to communicate with TAM devices. Instead of
defining lots of different commands and command arguments in the Tria-Link protocol, most of the
communication is done by reading and writing registers, and a register commit mechanism (section
4.2).

A single register abstracts a memory location in the RAM of the device, together with its type, accessi -
bility and name. For clarity's sake, registers are nested in a tree structure similar to the topology hierar-
chy; there are composites and arrays of registers.

All registers together form the register layout of a TAM device.

Different devices have different register layouts. Therefore, each register layout has an identifier, the
RLID. Each device bespeaks its RLID (TamDevice.RegisterLayoutId), such that the correct register
layout may be instantiated. Register layouts are saved in register catalog libraries which are loaded as
needed by the TAM framework.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 13/74

Figure 6: Part of the register tree as viewed by the TAM System Explorer.

Registers are a general purpose concept to configure a TAM Device. For a clear arrangement, registers are ordered
in a tree structure.

Registers

In practice, three main type of registers are found:

1. Parameters
Used to parametrize the firmware, for example the position controller of an axis on a drive.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 14/74

Figure 7: The register classes and interfaces

Just like the TAM Topology, the registers of a TAM Device form a hierarchy. In order to support registers with
strongly typed values, composite registers like register arrays, light weight array element registers, read-only regis-
ters and more, many classes and interfaces are introduced. The most common functionalities out of these classes
are finding a specific register, and reading, writing and committing that register.

TamRegisterBase<T>

RegisterComponent
Generic Abstract Class

Methods

Read (+ 5 overlo…

RegisterComponent
Abstract Class

Methods

CreateReadonlyRegisterListFrom
CreateRegisterListFrom
IsComposite

RegisterComposite

RegisterComponent
Abstract Class

Methods

FindTaggedComposite (+ 1 …

TamArray<T>

TamRegisterArrayBase<T>
Generic Sealed Class

Properties

Count

Methods

Write (+ 2 overloads)
WriteAndVerify

TamReadonlyArray<T>

TamRegisterArrayBase<T>
Generic Sealed Class

Properties

Count

TamRegister<T>

TamRegisterBase<T>
Generic Sealed Class

Methods

Parse
Write (+ 3 overlo…

TamRegisterArrayBase<T>

RegisterComposite
Generic Abstract Class

Properties

IsArray
Length

Methods

Read (+ 1 overload)

RegisterTagAttribute

Attribute
Sealed Class

RegisterValueConverter
Abstract Class

Properties

ValueType

Methods

CheckValue
Read (+ 1 overload)
Write (+ 1 overload)

IRegisterComponent

ITamDeviceComponent
ITamNode<IRegisterParent>

Interface

Properties

IsArray
IsCommittable
IsEnum
IsPersistent
Off set
ShadowOff set
SingleSize
Size

Methods

Commit (+ 3 overloads)
FindAncestorArrayElement
FindCommitGroups
FindTagCount (+ 1 overload)
FindTaggedComponent (+ 1 overload)
FindTaggedComponents (+ 1 overload)
IsDescendantOf
Revert (+ 1 overload)

ITamReadonlyRegister

IRegisterComponent
ISubscribable

Interface

Methods

ReadAsObject (+ 1 overload)
ReadShadowAsObject (+ 1 overload)

ITamRegister

ITamReadonlyRegister
Interface

Methods

Parse
Write (+ 1 overload)
WriteFromObject (+ 1 overload)

ISubscribable
Interface

Properties

Off set
Size
Station
ValueType

ITamDeviceComponent

ITamNode
Interface

ITamNode<TParent>

ITamNode
Generic Interface

ITamNode
Interface

Properties

Address
Name

IRegisterParent

ITamNodeComposite
Interface

ITamNodeComposite

ITamNode
IEnumerable

Interface

Properties

Nodes
this (+ 1 not shown)

Events

NodesChanged
NodesChanging

ITamNodeComposite<TP…

ITamNode<TParent>
IEnumerable<TChild>
ITamNodeComposite

Generic Interface

Properties

Nodes
this (+ 1 not shown)

ITamDevice

3 base interfaces
Interface

ITamReadonlyRegister<T>

ITamReadonlyRegister
Generic Interface

Methods

Read (+ 1 overload)
ReadShadow (+ 1 overload)

ITamRegister<T>

ITamReadonlyRegister<T>
ITamRegister

Generic Interface

Methods

Write (+ 1 overload)

ITamReadonlyRegisterList

IList<ITamReadonlyRegister>
Interface

Methods

GetResultIndex
Read (+ 1 overload)

ITamRegisterList

IList<ITamRegister>
Interface

Methods

GetResultIndex
Read (+ 1 overload)
Write (+ 3 overloads)

RegisterAccess
Enum

None
Read
Write
Persistent
ReadWrite
ReadWriteNonPersistent

TamReadonlyRegister<T>

TamRegisterBase<T>
Generic Sealed Class

IEnumerable
IRegisterParent
ITamNodeComposite<IRegisterParent, IRegisterComponent>

Shadow

Nodes

this

this

Parent

Access

Tags

Converter
Device

ParentNode

Registers

2. Commands
Commit switches (see section 4.2 below) and low level triggers for internal firmware state ma-
chines.

3. Signals
Read-only registers publishing the state of the firmware and allowing for data acquisition and syn-
chronization.

4.1 Retrieving Registers

Accessing registers in an application starts by consuming the Triamec.Tam.TriaLink NuGet package for
Tria-Link drives, or the Triamec.Tam.EtherCat NuGet package for EtherCat drives, respectively.

Both packages contain libraries with register layout namespaces which you can import:

using Register = Triamec.Tam.Rlid19.Register;

Given a device instance, get hold to its root register:

ITamDevice device = …;
var register = (Register)device.Register;

Climb down the register by dereferencing individual members:

var appRegister = register.Application.Variables.Floats[0];

Use the TAM System Explorer to learn about the structure of the register layout and to get the ad-
dresses of the registers needed in the code.

If you need to write code supporting devices with different register layouts, read chapter 13.4: Working
With Multiple Register Layouts.

Access the register:

float backup = appRegister.Read();
appRegister.Write(47.11f);

4.2 Committing

Parameters are read by the firmware in real time. Therefore, it would be dangerous when an applica-
tion changed for example the current controller parameters one by one. For this sake, the transactional
model of committing helps and enforces applications to change parameters all-at-once.

For example, the position controller parameters form the position controller commit group. Each com-
mit group has a special commit switch command register assigned. After changing some parameters,

SWNET_TamApiDeveloperManual_EP049 2024-08-02 15/74

Registers

this boolean register needs to be set to true, which marks the end of the transaction.

Each committable register has a shadow register. Writing to a committable register is always redirected
to its shadow register. When the commit switch is set, the firmware copies all shadow registers atomi-
cally to the committable registers.

The uncommitted values cannot be read back. Therefore, writing values and committing should be
done in sequence without any delay. Specifically, don't misuse the shadow as caching mechanism.

The commit switch is implemented as a normal command register. All commit commands are Boolean,
and reverted to False automatically, when the copy procedure has finished.

Parameter Group Commit Switch (Boolean Command Register)

General General.Commands.CommitParameter

PathPlanner Axes[].Commands.PathPlanner.CommitParameter

PositionController Axes[].Commands.PositionController.CommitParameter

CurrentController Axes[].Commands.CurrentController.CommitParameter

WarningWarning Do not change parameters before the last commit finished.

4.3 Register Converters

Registers hold simple numeric values only. More complex values, such as strings, cannot be directly rep-
resented. Therefore, a register composite or leaf may have a register value converter specified, defined
by the register layout designer. The converter provides applications with a more sophisticated view of
its underlying register data, and is also able to parse such values and save them back to the registers.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 16/74

Figure 8: Committing and shadow parameter registers

Writing a value to a position controller parameter redirects the change to its shadow. When the position controller
commit switch is written, all shadow parameters of the position controller commit group are copied to the actual
parameters.

Registers Position controller
shadow parameters

Position controller
parameters

PC

Write Read Commit

Copy

Registers

For example, the device name is represented as an integer array. It’s value is accessed as follows:

Triamec.Tam.Rlid19.Register register = …;
var name = register.General.Parameters.DeviceName.Converter.Read().ToString();
register.General.Parameters.DeviceName.Converter.Write(name + "!");

4.4 Speeding Up With Register Lists

Each time a register is read or written, a Tria-Link packet is sent, and a response is received. However,
the protocol allows reading or write multiple registers at once. Additionally, it is possible to send multi-
ple packets before waiting for a response.

These performance gains can be achieved using the ITamRegisterList and ITamReadonlyRegis-
terList interfaces, which are retrieved using RegisterComponent.CreateRegisterListFrom
and RegisterComponent.CreateReadonlyRegisterListFrom.

The following listing demonstrates fast parametrization of a path planner.

var modUpReg = axisRegister.Parameters.PathPlanner.ModuloPositionMaximum;
var modDownReg = axisRegister.Parameters.PathPlanner.ModuloPositionMinimum;
var velReg = axisRegister.Parameters.PathPlanner.VelocityMaximum;
var accReg = axisRegister.Parameters.PathPlanner.AccelerationMaximum;
var jerkReg = axisRegister.Parameters.PathPlanner.JerkMaximum;
var drfReg = axisRegister.Parameters.PathPlanner.DynamicReductionFactor;

ITamRegisterList list = RegisterComponent.CreateRegisterListFrom(modUpReg, modDownReg, velReg,
 accReg, jerkReg, drfReg);

list.WriteValues(Math.PI * 2, 0.0, 50f, 500f, 5000f, 1f);
modUpReg.Commit();

The commit is done individually at the end, such that data is only committed if writing succeeded.

While the order in which the registers are written is maintained, they are not written atomically. The
act of simultaneously copying is performed during the commit.

The similar listing for reading back the parametrization follows:

ITamReadonlyRegisterList rlist = RegisterComponent.CreateReadonlyRegisterListFrom(
 modUpReg, modDownReg, velReg, accReg, jerkReg, drfReg);

var values = rList.ReadAsObjects();

var modUp = (double)values[0];
var modDown = (double)values[1];
var vel = (float)values[2];
var acc = (float)values[3];
var jerk = (float)values[4];
var drf = (float)values[5];

SWNET_TamApiDeveloperManual_EP049 2024-08-02 17/74

5 Subscriptions and Acquisitions

Tria-Link provides a publish/subscribe mechanism in order to exchange data between Tria-Link stations
in real-time.

This includes receiving isochronous data on a host computer. The complexity of acquiring such data
from different devices simultaneously is hidden in the Acquisitions API (section 5.4). However, it might
be worthy to skim through the following subscription related sections in order to understand the re-
sources consumed by the API.

5.1 Subscriptions

In a subscription, one publisher station sends values of up to 5 of its registers, and one or more sub-
scriber stations receive these values as they are sent in isochronous data. The number of subscriptions
a station can publish depends on the product. Current products by Triamec Motion AG may publish up
to 16 subscriptions and subscribe to 16 other subscriptions. This results in 80 published and 80 sub-
scribed values.

Every device defines an isochronous data rate at which isochronous subscription packets are sent
(IsochronousBasePeriod). For servo drives, this is the frequency rate of its path planner task, which
is typically 10 kHz. Subscription participants need to be on the same link for correct synchronization.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 18/74

Subscriptions and Acquisitions
Subscriptions

Life cycle

Subscriptions need resources on the Tria-Link stations, therefore both the number of publications and
the number of subscriptions is limited on every station. Clients create subscriptions and must unsub-
scribe them in order to free the resources they occupy.

During the life cycle of a subscription, it can be enabled and disabled at the publisher as needed. Dis-
abling a subscription keeps its resources reserved and avoids unnecessary traffic on the Tria-Link at
times when the subscription values are not needed by the subscribers. Enabling of a subscription can
be done with different trigger conditions (see below).

Down-sampling

For the optimization of traffic on the Tria-Link and CPU load on the PC, a down-sampling can be set indi-
vidually for every publisher. The down-sampling denotes an integer multiple of the isochronous data
rate at which subscription packets are sent. The default value is 1, typically corresponding to a 10 kilo-
hertz rate. A down-sampling of 10 results in subscription packets to be sent 10 times less frequent than
the isochronous data rate.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 19/74

Figure 9: Subscriptions API

The TAM link exposes the subscription manager which allows to create new subscriptions among stations within the
TAM link. To define which registers are to be published and where they are subscribed, publisher and subscriber par-
ticipants have to be defined by the application. The publication rate, called “downsampling” and trigger conditions
may be specified. A fast publication allows for transmission rates up to 100 kHz. For data acquisition, a polling or
event driven model may be applied.

SubscriptionException

TamException
Class

TamLink

Ta mN odeComposite<Ta …
Sealed Class

TamStation

Ta mN odeComposite<TamLin …
Sealed Class

IClientSubscription

ISubscription
Interface

Properties

PacketSender

Methods

WaitForTrigger

IPublisher

ISubscriptionParticipant
Interface

Properties

Downsampling
Speed

Methods

GetValueIndex

ISubscribable
Interface

Properties

Offset
Size
ValueType

ISubscriber

ISubscriptionPartic…
Interface

ISubscription

ISubscriptionBase
Interface

ISubscriptionBase

IDisposable
Interface

Properties

Enabled
IsEnableDateSupported
TriggerLevel

Methods

Disable
Enable (+ 1 overload)
Unsubscribe

ISubscriptionHandler
Interface

Methods

ProcessPackets

ISubscriptionHandlerFactory<THandler>
Generic Interface

Methods

CreateSubscriptionHandler

ISubscriptionManager

IDisposable
Interface

Properties

Link
MaxDownsampling

Methods

Subscribe (+ 8 overloads)
SubscribeEvent (+ 6 overloads)

ISubscriptionParticipant

IList<ISubscribable>
Interface

ISubscriptionGroup<THandler>

ISubscriptionBase
IList<IClientSubscription<THandler>>

Generic Interface

IClientSubscription<THandler>

IClientSubscription
Generic Interface

Properties

Handler

SubscriptionNotification
Enum

Never
OnPacketsAvailable

SubscriptionPurpose
Enum

DataLogging
EventTracking

SubscriptionState
Enum

Disposed
Unsubscribed
Unsubscribing

Subscribed
Enabling

Disabling
Enabled

PublicationCommand
Enum

Off
Unconditional
AboveLevel

BelowLevel
RaisingEdge

FallingEdge
AnyEdge

AnyEdgeEvent

Manager

SubscriptionManager

Handler

Notification

Station

Station

TimestampDestination

Publisher

Purpose

Subscribers

Manager

State

TriggerCondition

Trigger

Subscription

Subscriptions

Subscriptions and Acquisitions
Subscriptions

Fast Subscriptions

For the analysis of signals updated at a higher rate than the isochronous data rate, it may be necessary
to publish them with their full time-resolution. This is possible by means of fast subscriptions. Fast sub-
scriptions also use isochronous packets with up to 5 register values. But instead of the values of up to 5
different registers, it contains up to 5 values of one register sampled at different times. The time stamp
of the packet corresponds to the last register value, and the time stamps for the other register values
can be calculated from the data rate of the fast subscription.

Fast subscriptions must be considered as expensive resources that cause high traffic rates on the Tria-
Link and high CPU load when handled in the PC. The typical application of fast subscriptions is for the
optimization of controller parameters. At the opposite, they are not used for axes coupling applications,
which affect the path planner and therefore are sufficiently served with regular speed subscriptions.

Some devices support superfast subscriptions, where two packets per isochronous sampling time are
transmitted.

The Speed property of subscriptions is configured within an IPublisher instance.

Subscription Purpose

Subscriptions may generate heavy traffic on the Tria-Link. This could cause problems when the com-
puter is among the subscribers, as control data could be lost within all the data logging values like a
needle in a haystack. Therefore, like in the USB protocol, the Tria-Link protocol defines different end-
points. This way, data logging values arrive in another FIFO than other data.

Subscriptions may be set up such that values are sent to the normal endpoint. This is defined by the
subscription's purpose which is only relevant for client subscriptions. Client subscriptions are subscrip-
tions where the only subscriber is the computer.

Subscriptions created by the Subscribe methods of the subscription manager always have the data
logging purpose. Massive data is expected and therefore, the values are sent to the second endpoint.

In contrast, subscriptions created with SubscribeEvent always have the purpose of event tracking.
The values published by such subscriptions has control character and is therefore sent to the normal
endpoint. In the following, such a subscription is referred to as event subscription.

Triggers & Events

When a subscription is enabled, a trigger condition can be set on an arbitrary register of the publisher.
The trigger register must meet the trigger condition before the subscription starts to send isochronous
subscription data. The following table gives an overview of the possible trigger conditions:

Trigger condition Description

Off Disables the publication.

Unconditional Enables the publication without condition.

Above level Enables the publication whenever the trigger signal is above the trigger level.

Below level Enables the publication whenever the trigger signal is below the trigger level.

Raising edge Enables the publication when the trigger signal crosses the trigger level with a raising edge.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 20/74

Subscriptions and Acquisitions
Subscriptions

Trigger condition Description

Falling edge Enables the publication when the trigger signal crosses the trigger level with a falling edge.

Any edge Enable the publication when the trigger signal crosses the trigger level.

Any edge event Sends a sample whenever the signal changes.

The last trigger 'Any edge event' has event-like character: it can be used to receive state changes from a
device.

CautionCaution Because data may be lost on the Tria-Link, it cannot be guaranteed that all events are al-
ways transmitted. Even when the error certainty is very small, for reliability reasons, it may
be more secure to use an any edge trigger.

5.2 Setting Up Subscriptions

Given a TAM link having two drives with the same register layout. The subscription manager is property
of the link.

ISubscriptionManager subscriptionManager = link.SubscriptionManager;

The goal is to set up a subscription between the two drives which transports path values. First, refer-
ences to the register roots of the drives is helpful.

Register publisherRegister = (Register)link[0][0].Register;
Register subscriberRegister = (Register)link[1][0].Register;

The cast is needed because the Register property of the TAM Device is of the general type
RegisterComposite, not of the register layout specific type.

Next, the subscription participants are set up.

ushort downsampling = 1;
IPublisher publisher = new Publisher(downsampling,

// timestamp implicitly included
publisherRegister.Axes[0].Signals.PathPlanner.Position.Float32,
publisherRegister.Axes[0].Signals.PathPlanner.Velocity,
publisherRegister.Axes[0].Signals.PathPlanner.Acceleration);

ISubscriber subscriber = new Subscriber(
 subscriberRegister.Axes[0].Signals.PathPlanner.PathValuesTimestamp,
 subscriberRegister.Axes[0].Commands.PathPlanner.Xnew.Float32,
 subscriberRegister.Axes[0].Commands.PathPlanner.Vnew,
 subscriberRegister.Axes[0].Commands.PathPlanner.Anew);

The passed registers form a one-to-one relationship. The down-sampling factor and high-speed argu-
ments may be omitted in this case, as they have the default value. The publishing and subscribing sta-
tions are explicitly defined by the passed registers. Sanity checking is being performed to ensure that all
passed registers belong to the same station.

Now, the subscription can finally be created.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 21/74

Subscriptions and Acquisitions
Setting Up Subscriptions

ISubscription subscription = subscriptionManager.Subscribe(publisher, subscriber);

This completes the set-up of the subscription. Multiple subscribers could be specified, which would au-
tomatically constitute a subscriber group.

To have the station send values, just type

subscription.Enable();

Please note that this method has an overload which allows for specifying trigger conditions.

When the publisher should stop to send values, type

subscription.Disable();

The subscription may be enabled again, as long as it is not unsubscribed.

subscription.Unsubscribe();
subscription.Dispose();

Unsubscribing the subscription frees the resources on the publisher and the subscribers and disposes
possibly constituted subscriber groups. The subscription must also be disposed to free allocated com-
puter resources. If it is disposed but not disabled and unsubscribed, the publisher remains sending val -
ues to the subscribers.

The Gear Up! sample application is a fully functional application demonstrating this type of subscrip-
tion.

5.3 Establishing Data Acquisition

In this section, a client subscription is set up for a given float register r using a down-sampling factor of
100. The values are appended to a file with name f. An above level trigger ensures that all delivered
values are greater than 0.

IPublisher p = new Publisher(100, r);
IClientSubscription subscription = r.Station.Link.SubscriptionManager.Subscribe(p);

subscription.Handler = new DataLogger(subscription, new StreamWriter("log.txt"));
subscription.Notification = SubscriptionNotification.OnPacketsAvailable;
subscription.Enable(PublicationCommand.AboveLevel, r, 0);

The DataLogger class implements the handler of the delivered data logging packets, like this:

public class DataLogger : ISubscriptionHandler {
 private int valueIndex;
 private TextWriter logger;

 public DataLogger(IClientSubscription subscription, TextWriter logger) {
 Subscription = subscription;
 this.logger = logger;

 // cache the index within the delivered packets of the subscribed register
 this.valueIndex = Subscription.Publisher.GetValueIndex(Subscription.Publisher[0]);
 }

SWNET_TamApiDeveloperManual_EP049 2024-08-02 22/74

https://github.com/Triamec/GearUp

Subscriptions and Acquisitions
Establishing Data Acquisition

 public IClientSubscription Subscription { get; private set; }

 public void ProcessPackets() {
 Packet[] packets = Subscription.PacketSender.Dequeue();

 foreach (Packet packet in packets) {
 this.logger.WriteLine(packet.GetPacketData()[valueIndex].AsSingle);
 }
 }
}

The client subscription needs to be disposed at the end. Another aspect unconsidered in the example is
exception handling. Subscribing and enabling may throw exceptions for different reasons.

5.4 Acquisitions

The acquisitions API (Triamec.Tam.Acquisitions) allows signals from devices to be saved in a buf-
fer with predefined size.

A variable specifies what to acquire together with a desired sampling time.

An acquisition instance is created by passing a list of variables. The Acquire method takes a duration
as argument. The data will be acquired in a synchronized manner.

When it returns, each variable contains the acquired data. These values are retrieved by iterating over
the variable using a foreach construct. If using LINQ is an option, the ToArray() extension method is
also handy. Timing information is obtained by the StartTime and SamplingTime properties.
There are situations where data will contain gaps. A variable without gaps is said to be regular. If the
IsRegular property returns false, the variable is split into segments which are themselves regular.

The sampling time of a variable may be different from the desired sampling time due to rounding and
transfer rate limitations.

It is possible to repeatedly acquire data without data loss between subsequent acquisitions. To enable
this functionality, construct an acquisition passing a prolonging duration, that is, a maximal duration for
which space must be reserved for acquired data.

Following a MATLAB script demonstrating what can be done.

% import all classes from the Acquisition namespace
import Triamec.Tam.Acquisitions.*

% create acquisition parameters without trigger and fastest possible sampling rate
samplingTime = TimeSpan(double(TimeSpan.TicksPerSecond)/50000);
sampleCount = 500000;
samplingDuration = TimeSpan.FromSeconds(samplingTime.TotalSeconds * sampleCount);

% create the variable to acquire, providing double values
variable = axisReg.Signals.General.ActualCurrentA.CreateVariable(samplingTime);

% subscribe a stimulus in order to start the acquisition (requires MATLAB R2010b)
trigger = TamTrigger(axisReg.Signals.PathPlanner.Done, ...
 PublicationCommand.FallingEdge, TamValue32.FromBool(true), ...
 Stimulus(@() MoveRelative(axis, 20)), TimeSpan.FromSeconds(10));

SWNET_TamApiDeveloperManual_EP049 2024-08-02 23/74

Subscriptions and Acquisitions
Acquisitions

% do acquiring
variable.Acquire(samplingDuration, trigger);

% alternative to acquire multiple variables synchronized
% twoVars = NET.createArray('Triamec.Tam.Acquisitions.ITamVariable', 2);
% twoVars(1) = variable1;
% twoVars(2) = variable2;
% acquisition = TamAcquisition.Create(twoVars);
% acquisition.Acquire(samplingDuration, trigger);
% acquisition.Dispose;

% copy result
data = GetValuesFromVariable(variable);

% get actual sample time
d = variable.SamplingTime.TotalSeconds;

% plot
t = 0:d:d*(sampleCount-1);
plot(t, data);
xlabel('t [s]');

function MoveRelative(axis, distance)
 import Triamec.TriaLink.*
 disp('Issuing stimulus')
 axis.MoveRelative(Float40.FromDouble(distance));
end

function values = GetValuesFromVariable(variable)
 if variable.IsRegular
 values = double(NET.invokeGenericMethod('System.Linq.Enumerable', ...
 'ToArray', {'System.Double'}, variable));
 else
 error('Data contains gaps.');
 end
end

Another common pattern with prolonging acquisitions is to retrieve as much data as available in buffers
in a loop, as depicted in this C# pseudocode.

double[] buffer = ...; int index = 0;
using (var acquisition = TamAcquisition.Create(timeLimit, variable1)) {
 while(true) {
 acquisition.Acquire(TimeSpan.Zero);
 foreach(var sample in variable1) {
 buffer[index++] = sample;

 }
 OtherWork();
 }
}

The call to Acquire passes a zero duration, which means in case of a prolonging acquisition to return
at least zero samples.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 24/74

6 Motion

Before moving an axis with a drive (section 6.2), some setup has to be done (section 6.1), and in order
not to miss the end of the move, the request technology comes in (section 6.3).

All motion related units are basically SI units, avoiding confusions. Positions are always relative to the
encoder. With a rotary encoder, all positions are to be interpreted in radian, where linear encoders im-
ply meters as unit.

6.1 Drive

Figure 10 introduces drive and axis in the topology object model, showing the motion related methods
and related enumerations only. Some methods are defined on both the drive and the axis object.

A method defined on the drive affects all axes, while the equivalent method on the axis affects only the

SWNET_TamApiDeveloperManual_EP049 2024-08-02 25/74

Figure 10: TAM drive elements

A TAM Device might be a drive. Drives can be set operational by turning on the bridge power. Then, its axes (usually
they have exactly one of them), may be enabled by the control methods, and moves may be executed. State register
read out convenience methods are provided.

TamAxis
Class

Properties

AxisIndex
Register

Methods

Control

ControlTestSignalGenerator
CoupleIn
MoveAbsolute (+ 5 overloads)
MoveAdditive (+ 5 overloads)
MoveRelative (+ 5 overloads)
MoveVelocity (+ 3 overloads)
ReadAxisError

ReadAxisState
SetPosition (+ 1 overload)
Stop (+ 2 overloads)

ITamDrive

ITamDevice
Interface

Methods

Control
ControlAxes
ControlTestSignalGenerator
CoupleIn
EmergencyStop
MoveAbsolute (+ 5 overloads)
MoveAdditive (+ 5 overloads)
MoveRelative (+ 5 overloads)
MoveVelocity (+ 3 overloads)
SetPosition (+ 1 overload)
Stop (+ 2 overloads)

ITamDevice

6 base interfaces
Interface

Methods

Control
PrepareForChangingMotorBaseConfiguration
ReadDeviceError
ReadDeviceState
ReadMotorBaseConfiguration
ResetFault
SetMotorBaseConfiguration
SetOperational
SwitchBridgePower

MotorBaseConfiguration
Enum

Unknown

NoMotorOneAxis
OneBrushDCMotor
OneSynchronousACMotor
TwoBrushDCMotors
NoMotorTwoAxes
OneTwoPhaseACMotor
IOOnlyDevice

OneAsynchronousACMotor

BridgePowerSwitch
Enum

Off

On

PathPlannerDirection
Enum

Current

Positive
Shortest
Negative

DeviceState
Enum

NotReadyToSwitchOn

ReadyToSwitchOn
Operational
FaultReactionActive
FaultPending

DeviceErrorIdentification
Enum

AxisState
Enum

Startup

Disabled
Enabling
Standstill
DiscreteMotion
ContinuousMotion
DirectCoupledMotion
TamaCoupledMotion

Stopping
ErrorStopping

AxisErrorIdentification
Enum

Drive

Axes

Motion
Drive

respecting axis. MoveAbsolute, for example, called on a drive object, will cause all axes of the drive to
move to the specified position. If a drive has only one axis, the behavior of the two sets of methods is
identical.

Figure 11 shows the state machine implemented by all devices, although it is originally designed for
drives. Some devices may never reach some states, for example the Operational state.

The state is read using the ITamDevice.ReadDeviceState method, which is just a convenience
function hiding a register read operation.

At start-up or reset, the device needs to be initialized, for example, its registers. This is the state Not-
ReadyToSwitchOn from the DeviceState enumeration, located in the Triamec.TriaLink names-
pace. The application has to wait as long as the device is in that state.

Before continuing, the motor base configuration needs to be correct. Principally, this is a special read-
only register setting up fundamental drive firmware internal parameters. It also has an influence how
many axes the device drives. It can be read out with ITamDevice.ReadMotorBaseConfiguration
and set with the SetMotorBaseConfiguration method.

NoteNote The above is only relevant for old generation drives. For new drives, the motor base config-
uration is an ordinary register parameter, one per axis, named Motor/Type. The men-
tioned APIs will be deprecated.

To be able to move, the bridge power must be switched on with the ITamDrive.SwitchBridge-
Power method. At the end, the same method is used to switch bridge power off.

When an error occurs, the device spontaneously transitions into state FaultReactionActive, and,
when the fault disappears, into FaultPending. This forces applications to check for the error and ex-
plicitly reset the fault (using the method ITamDevice.ResetFault). The error is retrieved using

SWNET_TamApiDeveloperManual_EP049 2024-08-02 26/74

Figure 11: Device State Machine

After a power cycle, the device is not ready to switch on for a short amount of time. When it is ready to switched on,
it may be set in the operational mode. When an error occurs, the device stays in the fault reaction active state until
the error condition goes away. The error must then be acknowledged before it can be set operational anew.

NotReady
ToSwitchOn

NotReady
ToSwitchOn

Ready
ToSwitchOn

Ready
ToSwitchOn

FaultReaction
Active

FaultReaction
Active

Fault
Pending

Fault
Pending

OperationalOperational

(ready) (not ready)

Bridge
PowerOff

Bridge
PowerOn

(fault cleared)
Reset
Fault

(drive fault)(start up)

Motion
Drive

ITamDevice.ReadDeviceError. An example of such a fault is when the temperature rises over a
specified limit.

NoteNote ReadDeviceError can also show a warning when the drive is in state
NotReadyToSwitchOn.

NoteNote For older devices, the ResetFault transition goes from FaultPending directly to
ReadyToSwitchOn.

6.2 Axis

The ITamDrive interface offers an Axes collection with element type TamAxis.

CautionCaution For devices supporting the SetMotorBaseConfiguration command, when the motor
base configuration changes, the axes instances are disposed and new ones created. There-
fore, it may be inopportune to cache references to the axes instances.

When the drive's bridge power is switched on, the axis is still inordinate, that is, disabled. The position
and current controllers have to be enabled, a motor brake has possibly to be released, and an angle
search algorithm may be executed. This procedure may last for several seconds. Enabling and disabling

SWNET_TamApiDeveloperManual_EP049 2024-08-02 27/74

Figure 12: Axis State Machine

As soon as the axis is ready, it may be enabled. After this potentially long running process, the axis is in standstill.
Using the move method, different motion modes can be established. Reprogramming is possible, when realized in
real-time by a Tama program, within 100 µs. At any time when moving, the axis may be stopped, which may need
some time to slowdown. In coupled motion, the path is received by a subscription which needs to be set up separately.

Disabled

Enabling
releasing brake

phasing

Error
Stopping Standstill Stopping

Discrete
Motion

DirectCoupled
Motion

Continous
Motion

TamaCoupled
Motion

Enable Disable

(done)

EmergencyStop

MoveAbsolute
MoveRelative
MoveAdditive

MoveVelocity

MoveCoupled

(done)

Stop

MoveDirectCoupled

Disabling
braking

Disable

(error)

Startup
not ready

Motion
Axis

the axis is done by the Control method, which additionally allows acknowledging axis errors.

Similar to the drive's states and errors, the axis' state and error are read out using the ReadAxisState
and ReadAxisError methods. The state diagram is shown in figure 12.

A path planner is responsible to force the axis to move. It is controlled by a PLCopen based API. The fol-
lowing excerpt shows a part of the API.

TamRequest MoveAbsolute(Float40 position, PathPlannerDirection direction);

TamRequest MoveRelative(Float40 distance);

TamRequest MoveAdditive(Float40 distance);

TamRequest MoveVelocity(float velocity);

TamRequest Stop(bool emergency);

TamRequest SetPosition(Float40 position, SetPositionMode mode);

TamRequest CoupleIn(bool direct);

TamRequest TorqueControl(float torque, float torqueRamp);

Most of these methods have additional overloads in order to specify direction, velocity, acceleration
and deceleration. For a different jerk, however, the maximum jerk register has to be changed.

The move API is doubled in the ITamDrive interface, allowing for commanding two axes of a single
drive at once.

The calls return immediately after acknowledgment was received from the drive. See chapter 6.3 how
to wait for the termination of move commands.

Movement takes place in six different states:

 Discrete motion.
The axis is moved by the specified relative distance or to an absolute position.

 Continuous motion.
A constant velocity, torque or force is applied forever. This mode has to be used with special care.
No assumptions have to be made about when the PC could reliably stop the axis again.

 Direct coupled motion and
 Tama coupled motion.

Move synchronously to another axis. See section 6.4 for more details.
 Stopping and ErrorStopping, respectively.

Bring velocity to zero. These states are not reprogrammable.

The parametrization of the path planner and the position and current controllers is not in the scope of
this document.

6.2.1 Control System Treatment

Most drives get integrated into a real time control system. Accessing them via TAM API is considered a
secondary use case.

Using the TamAxis.ControlSystemTreatment property and the Override method, tell the axis
that you're going to take control:

SWNET_TamApiDeveloperManual_EP049 2024-08-02 28/74

Motion
Axis

 class ControlSystemTreatment {

 bool IsSupported;

 void Override(bool enabled);

 bool GetIsOverridden()
 }

When not overriding the control system, the axis might reject your commands.

You should not do this, though, when your application is about to access the drive via the PCI interface.

All new generation drives with current firmware support this command. Use the IsSupported prop-
erty if your application needs to support legacy devices.

6.3 Requests

The procedures described in the last sections may be long-running. However, the methods command-
ing them just wait for an acknowledgment and then return control to the caller. It is always in the
caller's responsibility to detect the end of the procedure, be it enabling or a movement.

There are two principal possibilities to detect the end of a procedure, polling or events. Polling might be
implemented by regularly reading out drive and axis state.

To implement an event driven model, the TAM API offers the request infrastructure with the Tria-
mec.Tam.Requests namespace.

The starting point is the return value of the MoveAbsolute, Control and other methods, which is of
type TamRequest. The request object stands for the issued request and the process it initiates. It can
be used to wait for the termination of the request with the WaitForTermination method. If the
method returns without timeout, check the TamRequest.Termination property for successful termi-
nation of the request. Figure 13 shows the involved classes.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 29/74

Motion
Requests

SWNET_TamApiDeveloperManual_EP049 2024-08-02 30/74

Figure 13: Request API.

Methods such as TamAxis.MoveAbsolute return immediately. In order to wait for the end of the commanded
move, use the WaitForTermination method of the returned TamRequest instance.

TamAxis
Class

Methods

Stop() : TamRequest (+ 2 overl …

TamaVirtualMachine
Sealed Class

Properties

ProgramStateRegister : IT…

StateTransition

EventArgs
Sealed Class

TamRequest
Class

Methods

Abort() : void

WaitForExecuting() : void (+ 1 …
WaitForTermination() : void (+ …

TamStation

TamNodeCompos…
Sealed Class

TamAdapter

TamNodeCompos…
Sealed Class

ITamDevice

6 base interfaces
Interface

Properties

StateObserverCount : int

Methods

AddStateObserver() : int
RemoveStateObserver() : int

ITamRequestDestination

IDisposable
Interface

Methods

AbortAllTamRequests() : void
AbortTamRequests() : void

Events

Transition : EventHandler<StateTransition>

ITamRequestSource
Interface

ITimedSession

IServiceSession
Interface

ITimedResponse

IServiceResponse
Interface

DeviceErrorIdentification
Enum

TamRequestState
Enum

Pending

Executing
Terminated

TamRequestResolution
Enum

DeviceError

AxisError
Error
Aborted
None
Superseded
Completed
Unknown

DeviceState
Enum

AxisErrorIdentification
Enum

AxisState
Enum

MergedStates
Struct

Properties

AsynchronousTamaState : byte

A s y nchronousTamaTransition …
DeviceTransition : bool
IsochronousTamaState : byte
I sochronousTamaTransition : b…

Methods

GetAxisState() : AxisState

HasAxisTransition() : bool
IsEnabled() : bool

MergedErrors
Struct

Methods

GetAxisError() : AxisErrorIdenti…

TamRequestIdentification
Struct

Timestamp
Struct

ITamDeviceComponent
ITamRequestDestination
IRemotable

ITamaNodeComponent
ITamRequestSource
ITamRequestDestination

ITamRequestSource
IDisposable
IPeripheryLayoutOwner
IRemotable

ITamRequestSource
ISimulatable
IDisposable
IPeripheryLayoutOwner
IRemotable

Timestamp

States

Errors

DeviceRequest

AxisRequests : IList<TamRequest>

IsoTamaRequest

AsyTamaRequest

Identification

CurrentState

Termination

Successor

DestinationStation

TimedResponseAcceptanceDate

DeviceState

DeviceError

Source

Destination

Session

ITamRequestDestination.Transition
event object

Return value of all request methods,
p.e. TamAxis.Stop()

Motion
Requests

You will typically just use the WaitForSuccess and WaitForSuccessAsync convenience methods
which allow checking termination and success in a one-liner.

The following listing outlines a method which commands a given axis to move to a specified position.
The method does not return before the movement has terminated, given the movement does not last
longer than a given duration maxTimeoutMilliseconds. It returns true when no timeout occurred
and the movement was successfully executed.

TamAxis axis;
int maxTimeoutMilliseconds;

void MoveTo(float position) => axis.MoveAbsolute(position).WaitForSuccess(maxTimeoutMilliseconds);

Possible reasons a request could not be successfully completed include axis errors or another request
reprogramming the path planner.

Internally, an event subscription is used to track the life cycle of the request by means of the drive or
axis state machine. To be careful with resources, the internally maintained event subscription is only set
up if requested by the application. This is done by the ITamDevice.AddStateObserver and
RemoveStateObserver methods, or when a Transition event is subscribed (Available in
ITamDevice, TamAxis and TamaVirtualMachine).

CautionCaution These methods and events implement the reference counter pattern. Thus, it is critical to
always call the pairs of methods (add/remove) in a strictly symmetrical manner. Otherwise,
internally acquired resources might not correctly be disposed of.

The transition event can be subscribed in order to observe the drive or axis state machines. As the
name proposes, the event is also fired when a transition from a state to itself occurs.

The Device State Observer concept paper elaborately describes the internals of the request mechanism
([10]).

Reliability Considerations

The request mechanism is vulnerable to communication failures, as there is no guarantee for events to
be delivered over the Tria-Link. Therefore, production quality code should always call the WaitFor-
Termination method specifying a timeout. The TamRequest.Abort and the AbortTamRequests
and AbortAllTamRequests methods defined on ITamDevice, TamAxis and TamaVirtualMachine
instances allow for re-synchronization in case of communication loss. State observation should not en-
tirely rely on the transition events but allow for forced re-synchronization with the current state.

6.4 Coupling

Coupling is the synchronization of an axis using to a stream of incoming isochronous data using the spe-
cial path planner modes DirectCoupledMotion and TamaCoupledMotion.

The axis may receive data from

SWNET_TamApiDeveloperManual_EP049 2024-08-02 31/74

Motion
Coupling

 TwinCAT – this is out of the scope of this document.
 the control system using Direct Feed. Refer to the Direct Feed developer sample.
 drive-to-drive data exchange. Refer to the respective Application Note [8].

Coupling can be direct or preprocessed.

In direct coupled motion, the path planner takes the subscriber values as input.

In Tama coupled motion, position, velocity and acceleration (the triple) are taken from three sibling reg-
isters, typically called XNewCoupled, VNewCoupled and AnewCoupled. A Tama program (see section
7) defines a coupling function taking the incoming triple from the master and calculating the input
triple for the path planner.

The API

TamRequest CoupleIn(bool direct);

brings the path planner in coupled motion. The triple must be feasible regarding current motion, or an
error will occur.

Coupling ends with the next path planner command, for example Stop.

6.5 Schedules

A schedule is a table of Tria-Link commands paired with relative time information to be sent over the
Tria-Link one by one in real-time.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 32/74

https://github.com/Triamec/DirectFeed

Motion
Schedules

The Schedule is saved within the register layout of a TAM Device implementing the scheduling function-
ality. Further on, the commit mechanism (section 4.2) is used to update Schedules transactionally
based.

NoteNote Currently, only TD-Bus hosts implement Schedules. However, future implementations of
other TAM Devices may contain this functionality, too.

A Schedule entry consists of one Tria-Link communication packet and a relative send time information,
in milliseconds, when the communication has to take place. Currently, the software supports only move
and register write commands to be saved within a Schedule entry, but other communication will not be
used with Schedules, anyway. The destination station of the Schedule needs to be within the same Tria-
Link as the device where the Schedule resides.

If an entry needs to be sent to multiple stations, either a group needs to be established, or the entry
needs to be doubled.

It is not allowed to write the same entry instance twice in one or multiple Schedules.

Typically, a Schedule has only very few entries because exception handling is complex. The application
does not have any information about whether commands have been accepted and executed, because
no responses are sent by the destination stations.

The entries have to be added to the Schedule sorted by the relative send time. A Schedule can be com-

SWNET_TamApiDeveloperManual_EP049 2024-08-02 33/74

Figure 14: Schedule API

A Schedule is a list of Tria-Link commands, to be sent in real-time at specified relative times. The
Schedule can contain move and register write commands. The commands can be sent to any
station within the Tria-Link of the scheduling TAM Device. Schedules are maintained within reg-
isters and make use of the commit mechanism (section 4.2).

TamAxis
Class

ScheduleEntry
Abstract Class

Properties

RelativeSendTime : int

WriteRegisterScheduleEntry

ScheduleEntry
Sealed Class

IssueMoveScheduleEntry

ScheduleEntry
Sealed Class

TamSchedule
Sealed Class

Properties

Capacity : int
Count : int

CurrentIndex : int

Methods

Add() : void
Clear() : void

Commit() : void

Start() : void

Stop() : void

ITamDevice

6 base interfaces
Interface

ITamRegister

ITamReadonlyRegister
Interface

PathPlannerCommand
Enum

PathPlannerDire…
Enum

ScheduleState
Enum

Stopped

Started

TamValue32
Struct

Float40
Struct

Destination

Registers : IList<ITamRegister>

Values : IList<TamValue32>

Axis Command Direction MoveParameter

State

Schedules : IList<TamSchedule>

Motion
Schedules

pletely cleared, but individual entries may not be removed. All those modifications have to be com-
pleted with a commit. This allows for preparation of a new Schedule during the execution of the same
Schedule (in memory).

The Schedule can be started and may be stopped in the middle of processing. The relative send time in-
formation in the entries correspond to the point in time when the Schedule was started. The TAM
scheduler device checks in each cycle whether the next entry in each of its Schedules has to be sent.
Therefore, if a schedule has the same relative send time or even an earlier send time than its predeces-
sor entry, it will be sent too late, that is, in the next cycle of the scheduler task.

The last sent entry can be read out by the current index. Committing a started Schedule immediately
stops it.

6.5.1 Scheduling Example

This example demonstrates the usage of the Schedule API in comprised form. It assumes that the axis is
already parametrized and enabled such that it is able to execute a move request. The referenced sta -
tion names need to exist.

ITamDevice scheduler = Link["Scheduler"][0];
ITamDrive drive = Link["Drive"][0] as ITamDrive;

The task is to write a specific register on the scheduler device and, after exactly half a second, move on
the specified drive.

A register of the scheduler itself is found using a concrete register layout type. The schedule is assumed
to be empty.

TamSchedule schedule = this.scheduler.Schedules[0];
ITamRegister<float> register = ((Register)scheduler.Register).Tama.Variables.GenPurposeVar0;
schedule.Add(new WriteRegisterScheduleEntry(
 new ITamRegister[] { register }, // maximal 4 registers are allowed
 new TamValue32[] { 4.0f }, 0));

The move is prepared by specifying the desired axis to move with. Then, the Schedule is committed and
started immediately.

schedule.Add(new IssueMoveScheduleEntry(drive.Axes[0], PathPlannerCommand.MoveRelative,
 PathPlannerDirection.Positive, 5.0f, 500));

schedule.Commit();

schedule.Start();

SWNET_TamApiDeveloperManual_EP049 2024-08-02 34/74

7 Real-Time Programming with Tama

With Tama Programs, the drive firmware can be extended with customer specific implementations run-
ning at up to 10kHz real-time.

Refer to the reference [9], specifically the API chapter within the advanced topics.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 35/74

8 Configuration

The TAM Configuration mechanism allows for host-side persistence of the parameter registers, the
naming within the topology, references to Tama programs, and module configuration.

Technically, the configuration framework builds on top of the .NET XML serialization framework. That is,
a TAM Configuration is an XML file with a layout defined by the classes in the Triamec.*.Configu-
ration namespaces, resembling the TAM Topology.

Each register layout defines which registers need to be persisted. A register which will be persisted
needs to have read/write access and a special persistent flag set (shown by the IsPersistent prop-
erty of the IRegisterComponent interface).

For the correct relationship between persisted data and hardware instances, hardware serial numbers
and other identifiers are included. If at loading time, some persisted data does not match local hard-
ware, the configuration will not be loaded.

The registers and also Tama programs may be persisted directly on the TAM Device, when set up in
stand-alone mode. For more information, please read the respective chapter below.

8.1 Configuration API

The easiest way to load and save configurations is offered by the ITamNode interface through two
methods, Save and Load, both taking a path string as argument. Only the information of the instance
together with all children is saved, however enriched with the hierarchical information of all ancestors.

To gain more control, the TamSerializer and TamDeserializer classes are provided to refine save
or load options, respectively.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 36/74

Configuration
Configuration API

The serializer has the following features:

 A stream may be specified instead of a file name. One use case where this comes in handy are ap -
plications which embed TAM Configurations within their own XML configurations.

 A custom coverage over TAM nodes may be defined. That is, a configuration may be set up to con-
tain only one TAM Device, or only some parts of the register tree of one TAM Device. Covered
nodes are always saved with all of their child nodes.

 An option allows specifying whether to start the configuration hierarchy from the topology root, in-
dependently of the configured coverage. This property is set per default, such that the XML files all
start with the top level hierarchy. While this setting restricts any persisted registers to be loaded to
another TAM Device, at the same time, it also guards a user from applying a configuration to a
wrong device.
When the option is deactivated, the configuration's root is defined as the nearest common ancestor

SWNET_TamApiDeveloperManual_EP049 2024-08-02 37/74

Figure 15: Basic TAM Configuration API

There is an upper layer which describe configurations independently from the TAM system, and a lower layer which
is specific to the TAM system. Classes from the lower layer inherit from the upper layer.

The most convenient way to save and load configurations is by calling the respective methods of any TAM node. To
gain more control, the TamSerializer and TamDeserializer classes are provided. Among other features,
this enables applications to embed TAM Configurations within their own XML configurations, detect hardware
changes (see section 8.2) and save and load partial configurations.

Deserializer

TamDeserializer<TamTopologyConfiguration>
Sealed Class

Serializer
Static Class

Methods

Save() : void (+ 1 overload)

TamDeserializer<TConfiguration>

Deserializer<TConfiguration>
Generic Class

ITamNode
Interface

Methods

Load() : void

Save() : void

IDeserializer
Interface

Methods

Match() : MatchResult

IApplicableConfiguration
Interface

Properties

ExpectedVersion : string

Target : object

Methods

Apply() : void

DoPostDeserialization() : void

Match() : MatchResult

RegisterInclude
Enum

Always
OnlyWhenNoModuleAssignment
Never

Deserializer<TConfiguration>

Component
Generic Class

Properties

Configuration : TConfiguration
IsBusy : bool

Methods

Load() : LoadResult (+ 3 overloads)
LoadAsync() : void (+ 1 overload)

Events

LoadCompleted : EventHandler<Lo…

TamSerializer
Sealed Class

Properties

IncludeModuleAssignments : bool
IncludeModuleParameters : bool
IncludeMotorBaseConfiguration : bool
IncludeTamaDownloads : bool
IsBusy : bool
Path : string
StartFromTopology : bool

Methods

CancelAsync() : void
Dispose() : void
Save() : void (+ 3 overloads)
SaveAsync() : void (+ 1 overload)

Events

SaveCompleted : AsyncCompletedEven…
SaveProgressChanged : ProgressChang…

TamReference

IDeserializer

IDisposable

IncludeRegisters

OriginalCoverage : ICollection<ITamNode>

Coverage : ICollection<ITamNode>

Configuration
Configuration API

node of all nodes within the coverage. An application which wants to save the TAM Configuration
per TAM Device can just create the serializer with a device as single coverage node and this setting
disabled.
The setting may be passed such that not the topology is defined as root. This can still be overwritten
by the StartFromTopology setting.

bool startFromTopology = false;
using (var serializer = new TamSerializer(startFromTopology, this.drive)) {
 serializer.Save("MyDrive.xml");
}

 A couple of include properties, all set per default, allow omitting certain parts of a TAM Device con-
figuration, namely Tama program location, motor base configuration, registers and module parame-
ters.

When deserializing, the coverage is implicitly defined by the TAM Configuration. Per default, anything
found in a configuration is applied. The deserialization process concentrates more on whether it suc-
ceeds to match all configuration with the correct device. The procedure divides into three stages:

SWNET_TamApiDeveloperManual_EP049 2024-08-02 38/74

Configuration
Configuration API

1. Load the configuration from a file or using a specified XML reader. This method is called directly
on the deserializer object and returns a load result. It parses the XML file into a hierarchical data
structure resembling the TAM Topology, but only containing configuration data.

2. Match the configuration tree against the TAM Topology. Anything found in the configuration must
have a relation to a real counterpart. Additional information is saved with the configuration to re-

SWNET_TamApiDeveloperManual_EP049 2024-08-02 39/74

Figure 16: TAM Configuration hierarchy

The configuration hierarchy is parallel to the TAM Topology hierarchy (Figure 4). One difference is the flattened reg-
ister tree. This hierarchy directly defines the XML format of the TAM Configuration as defined by the XML serializer
of the .NET framework.

TamTopologyConfiguration

TamNodeCompositeConfiguration<TamTopology…
Class

Ta mNodeCompositeConfiguration<TTam…

TamNodeComponentConfiguration<TTamNode>
Generic Abstract Class

Properties

Children : Collection<TChild>

TamSystemConfiguration

TamNodeCompositeConfiguration<TamSystem, …
Class

TamLinkConfiguration

TamNodeCompositeConfiguration<TamLink, Tam…
Class

TamStationConfiguration

TamNodeCompositeConfiguration<TamStation, T…
Class

Properties

HardwareSerialNumber : UniqueDeviceId
LocalNodeNumber : byte
MotorBaseConfiguration : string
ProductType : ProductType

TamDeviceConfiguration

TamNodeComponentConfiguration<IT…
Class

Properties

DspFirmwareId : uint
RegisterLayoutId : uint
TamaVirtualMachineId : uint

TamaNodeConfiguration

TamNodeComponentConfiguration<Ta…
Class

Properties

CodeAsBase64 : string
TamaAssemblyPath : string

Nested Types

RegisterCompositeConfiguration

TamNodeCompositeConfiguration<Register…
Class

RegisterComponentConfiguration

TamNodeComponentConfiguration<ITamRe…
Class

Properties

Type : string
Value : string

TamAdapterConfiguration

TamNodeCompositeConfiguration<TamAdapter, …
Class

Properties

HardwareSerialNumber : UniqueDeviceId
ProductType : ProductType

ITamConfigurationNode
Interface

Properties

Address : Uri

Methods

Adapt() : bool
EstablishParentNavigation() : void
IsCompliant() : bool

IApplicableConfiguration
Interface

Properties

ExpectedVersion : string
Target : object

Methods

Apply() : void
DoPostDeserialization() : void
Match() : MatchResult

Ta mNodeComponentConfiguration<TTa …
Generic Abstract Class

Properties

Name : string
TargetNode : TTamNode
Version : string

ITamConfigurationComposite

ITamConfigurationNode
Interface

Methods

Add() : void
Remove() : bool

ITam C onfigurationC om posite

ITam C onfigurationC om posite

R e giste rs

Tam aNode

IApplicable C onfiguration
ITam C onfigurationNode

Parent

Configuration
Configuration API

produce this relationship.
If a part of the configuration cannot be related, a mismatch is added to the match result and the
configuration cannot be applied.

3. Apply the configuration to the TAM Topology. All registers found in the TAM Configuration is writ-
ten and committed, the topology nodes are renamed according to the configuration, and so on.
This step can only be invoked from a match result without any mismatches.

Figure 17 shows the classes involved in this process. For a complete deserialization example, see the
section below.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 40/74

Configuration
Configuration API

The SaveDialog and LoadSurveyor classes provide GUI functionality. While the latter just shows a
progress window, the SaveDialog lets the user choose from the different options offered by the seri-

SWNET_TamApiDeveloperManual_EP049 2024-08-02 41/74

Figure 17: Configuration Loading and Errors

As in figure 15, there are two layers, the more general layer independent from the TAM system, and the other one.
The Match and Apply methods have asynchronous counterparts, not being shown for convenience. The
LoadResult class is returned using the Deserializer classes, while the MatchResult class is the result of
the LoadResult.Match method.

TamConfigurationMatchException

MatchException
Class

LoadResult
Class

Properties

ResolvingOccurred : bool

Methods

Match() : MatchResult (+ 1 overload)

MatchResult
Class

Properties

Match : object
Success : bool

Methods

Apply() : void
Resolve() : bool

MatchException

ConfigurationException
Class

Properties

DetailMessage : string
Target : object
Token : object

ConfigurationException

Exception
Class

ChildrenMatchException

TamConfigurationMatchException
Sealed Class

ITamNode
Interface

ITamConfigurationNode
Interface

Properties

Address : Uri

Methods

Adapt() : bool
IsCompliant() : bool

IApplicableConfiguration
Interface

ITamConfigurationComposite

ITamConfigurationNode
Interface

Methods

Add() : void
Remove() : bool

MatchInformationPair
Struct

ID isposable

ID isposable

Targe tNode

C onfigurationNode

Errors : …

W arnings : …

M ism atches : …

Inform ation …

C onfiguration

U nm atche dD e sce ndants : …

C hoice : …

Parent

Configuration
Configuration API

alizer.

8.2 Mismatch Resolution

As described in the above section, a TAM Configuration can only be applied if there are no mismatches.
Many use cases afford a less restrictive policy, though. Such policies need to be implemented by the ap-
plication by modifying the TAM Configuration instance tree, as shown in figure 16.

By adapting the TAM Configuration tree to the actual system, mismatches can be eliminated. After this
readjusting step, a new match can be tried.

In order to automate this resolving step, the Triamec.Tam.Configuration.Resolving namespace
is introduced. Custom implementations of IResolver can be registered using the Configuration-
Resolver. This may include update wizards or factory setup procedures.

When MatchResult.Success is false, call MatchResult.Resolve() and check the return value
whether all mismatches could be resolved. MatchResult.ResolvingOccurred also indicates
whether the configuration has changed in memory and might need to be persisted by the application.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 42/74

Configuration
Mismatch Resolution

The following example assumes a booted TAM Topology topology.

using(Deserializer deserializer = new Deserializer()) {
 LoadResult loadResult = deserializer.Load("My config.xml");
 if(loadResult.Errors == null) {
 MatchResult matchResult = loadResult.Match(topology, topology);
 if(!matchResult.Success) {
 foreach(TamConfigurationMatchException mismatch in matchResult.Mismatches) {
 ChildrenMatchException childEx = mismatch as ChildrenMatchException;
 if (childEx != null) {

SWNET_TamApiDeveloperManual_EP049 2024-08-02 43/74

Figure 18: The Resolving Framework

TAM Configuration mismatches are updated using resolvers, which are registered to the
ConfigurationResolver. For new register layouts, update resolvers are authored from within the XML lay-
out declaration. The above register related classes are then automatically generated.

ConfigurationR esolver
Static Class

Fields

TRACE_CATEGORY : …

Methods

Register() : void

Resolve() : bool

R egisterAddition

RegisterUpdate
Sealed Class

Properties

Advice : string

DefaultValue : string

Methods

RegisterAddition()

R egisterDeletion

RegisterUpdate
Sealed Class

Properties

Note : string

Methods

RegisterDeletion()

R egisterR eplacement

RegisterUpdate
Sealed Class

Methods

RegisterReplacement()

RegisterResolver

ReadOnlyCollection<RegisterUpdateGroup>
Abstract Class

Properties

PreviousRegisterLayoutId : uint

Methods

RegisterResolver()

Resolve() : void

RegisterUpdate
Abstract Class

Properties

Address : string

Description : string
RegisterType : Type
Unit : string

MatchR esult
Class

Properties

ResolvingOccurred : bool

Methods

Resolve() : bool

IR esolver
Interface

Methods

Resolve() : bool

IR egisterLayoutFactory
Interface

Methods

GetResolverToRlid() : Reg isterResolver

R esolveUserInteraction
Enum

No

Yes
Force

MismatchCode
Enum

TamConfigurationMismatch

CommunicationFailure
ChildMissing
WrongAddress
UnknownAddress
AdapterMismatch
StationMismatch
MotorBaseConfigurationNotSupported

WrongRegisterLayout
RegisterTypeMissing
WrongRegisterType
RegisterValueMissing
RegisterEnumValueUndefined
RegisterBoolValueCorrupt

RegisterIntegerValueCorrupt
RegisterFloatValueCorrupt
RegisterFloat40ValueCorrupt
UnsupportedRegisterType
RegisterAddressMissing
InvalidTamaAssemblyFile
ActiveModuleDetected

ModuleLoadFailure
IllegalModuleType
ModuleTypeNotFound
ModuleNotApplicable
WrongModuleType
UnknownParameter
UnknownModuleComponent

ParameterValueMissing
ParameterEnumValueUndefined
WrongParameterType

R egisterUpdateGroup

ReadOnlyCollection<RegisterUpdate>
Sealed Class

Properties

Description : string

Title : string

Methods

RegisterUpdateGroup()

IDisposable

UserInteraction

Su p p ortedCodes : IEnu m era ble<M ism a tchCode>

The RegisterUpdate and
derivated classes are
defined in the register
layout XML definition.
The RegisterResolver
class is derived by p.e. a
Rlid2To3Resolver class
from which the register
layout designer may
again derive in order to
program diffi cult update
steps.

Configuration
Mismatch Resolution

 for (int configIndex = 0; configIndex < childEx.UnmatchedDescendants.Count;
 configIndex++) {

 if (configIndex < childEx.Choice.Count) {
 TamStationConfiguration stationConfig = childEx.
 UnmatchedDescendants[configIndex] as TamStationConfiguration;

 TamStation station = childEx.Choice[configIndex] as TamStation;
 if((stationConfig != null) && (station != null)) {

 // change unique keys
 stationConfig.Type = station.HardwareIdDetails.Type;
 stationConfig.HardwareSerialNumber = station.HardwareSerialNumber;
 stationConfig.LocalNodeNumber =
 station.HardwareIdDetails.LocalNodeNumber;
 }
 }
 }
 }
 }

 // try again
 matchResult = loadResult.Match(topology, topology);
 }
 if (matchResult.Success) {
 matchResult.Apply();
 }
 }
}

This code automatically detects when a TAM station was exchanged and relates the configuration of the
old station to the new one. Please note that the TAM Configuration XML is left unchanged in this exam-
ple. The example could also have been implemented using an IResolver. This simple task is left as an
exercise to the reader.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 44/74

9 Stand-alone Mode

Some applications afford that the TAM Device is stand-alone. That is, it is not connected to a Tria-Link
ring, and the device needs to start up, configure itself and do Tama program tasks.

9.1 Start-up Process

When powered on, the device checks its start-up settings. If stand-alone start-up is active, the device
configures itself according to the following settings:

 Use local clock
Per default, the Tria-Link delivers clock information to the device for synchronization. With this flag
set in persisted memory, the device generates its own clock. This makes it possible to operate the
device without attached communication cables and without computer nearby.

 Use static addresses
Each station in a Tria-Link has a number of byte addresses used for communication. One of it is the
unique station address, three group addresses and the predefined broadcast address.
If this flag is set, the addresses are read from the respective start-up settings stored in persistent
memory.
This feature can be used to set up a network of stand-alone devices communicating with each
other. For example, paths could be transmitted in order to couple one drive to another.

 (no setting)
The parameters, subscription information and Tama code memory – all parts of the register layout –
are loaded from persistent memory into volatile register memory.
This is not done unconditionally. The register layout and virtual machine IDs are persisted together
with the registers. At start-up, these IDs need to match the firmware's RLID and VMID. This might
not be the case after new firmware was downloaded (see chapter 10).
This functionality ensures the correct parametrization of a device, establishes publishing and sub-
scribing register values and prepares a Tama program.

 Start the isochronous Tama virtual machine
As described in chapter Error: Reference source not found, Tama programs are not automatically ex-
ecuted. With this option specified, the isochronous virtual machine is taken to be operational.

 Start the asynchronous Tama virtual machine
This setting has the same functionality as the setting described above.
With the isochronous or asynchronous task running, custom start-up actions can be executed. For
example, an axis could be enabled and set into coupled movement.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 45/74

Stand-alone Mode
Start-up Process

Another use-case is the conditional execution of different tasks dependent on some I/O.

With all of these options together, the device receives vast autonomy which might draw a computer su-
perfluous in a production environment, lowering costs and complexity.

9.2 Start-up API

The settings described in the above chapter are controlled and checked by start-up commands, defined
in the Tria-Link protocol. The TAM API abstracts from these commands and offers different methods
through the ITamDevice interface, as seen in figure 19.

Stand-alone mode can be established by activating the stand-alone start-up specifying the desired start-
up settings. This will also write the current registers to memory.

Another method is provided to deactivate stand-alone mode again, which will invalidate all persisted
settings and registers forever.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 46/74

Figure 19: The Start-Up API

The device tells whether it supports the stand-alone functionality. If it does so, stand-alone mode can be established
with the ActivateStandAloneStartup method specifying the desired start-up settings. Another method is
provided to deactivate stand-alone mode again. The current settings may be queried and the persisted parameters
(including Tama program) may be reloaded from persistent memory, overwriting all recent changes to the parame-
ters.

StartupSettings
Class

Properties

Group1Address { get; set; } : byte
Group2Address { get; set; } : byte

Group3Address { get; set; } : byte
StandAloneActive { get; set; } : bool
StartAsynchronousTamaVM { get; set; } : bool
StartIsochronousTamaVM { get; set; } : bool
StationAddress { get; set; } : byte
UseLocalClock { get; set; } : bool

UseStaticAddresses { get; set; } : bool

Methods

CreateDeactivatedSettings() : StartupSettings

ITamDevice

6 base interfaces
Interface

Methods

ActivateStandAloneStartup(StartupSettings startupSettings) : void
DeactivateStandAloneStartup() : void
ReadStartupSettings() : ResponseStartupSettings
ReloadParameters() : void

ResponseStartupSettings

StartupSettings
Class

Properties

Inconsistencies { get; set; } : IEnumerable<Ar…

Methods

GetMD5Checksum() : int[]

Stand-alone Mode
Start-up API

The current start-up settings may be queried and the persisted parameters, subscriptions and Tama
program may be reloaded from persistent memory, which discards all recent changes to the register pa-
rameters, subscriptions and code space.

The following example shows how the start-up settings for a drive with homing Tama program would be
set up:

device.ActivateStandAloneStartup(new StartupSettings {
 StartIsochronousTamaVM = true
});

SWNET_TamApiDeveloperManual_EP049 2024-08-02 47/74

10 Firmware Update

The TAM API allows updating the firmware using Tria-Link communication. This way, a TAM Device does
not need to be physically opened in the field in order to gain access to the debug connector used for
initial programming.

Firmware updates are based around the concept of products and flash areas. A product is member of a
greater product family.

Firmware is deployed as packages for different product families. There may be multiple firmware with
different functionality – feature sets – for one product family. Firmware packages are semantically ver-
sioned [17].

For example, Triamec Motion AG provides the packages

TIOB-1046+EnDat.TAMfw

TIOB-1046+PulseTrain.TAMfw

for its TIOB01 and TIOB02 I/O module products. So, the TIOB family comes with firmware having either
feature set EnDat or PulseTrain. That is, there is no support to have an EnDat encoder connected
and at the same time output a pulse train signal.

10.1 Firmware Infrastructures

To provide a firmware update executed by the running firmware itself can be dangerous. Depending on
hardware resources on a TAM Device and other requirements, different firmware infrastructures have
been implemented, ensuring reliable updates.

1. The Factory/Alternative infrastructure
Initially, the TAM Device is programmed with a factory firmware. As needed, an alternative
firmware may be loaded in the field for new features or bug fixes. Conversely, the factory
firmware cannot be overwritten in the field. Both firmwares are fully functional, and the alterna-
tive firmware can be updated by itself. To activate the updated firmware, the device needs to be
power cycled.

2. The Base/Application infrastructure
This infrastructure is used in presence of small persistent code memory, where two full firmware
versions wouldn't fit and the code is directly executed. Each firmware may only reprogram the
other firmware and the other firmware can be activated without rebooting.
Only the application firmware is fully functional, where the base firmware's sole capability is to

SWNET_TamApiDeveloperManual_EP049 2024-08-02 48/74

Firmware Update
Firmware Infrastructures

update the application firmware. A small independent bootloader chooses one of the firmwares
at start-up, where the application firmware is preferred.

NoteNote Triamec devices implement the Factory/Alternative infrastructure.

When referencing different firmware, the term firmware location has been established. When down-
loading new firmware, a location must be specified as destination of the download.

10.2 Transferring Firmware

The firmware related functionality of a product is accessed by its package downloader, shown in figure
20. Concurrent downloads are prohibited and the downloader tells about its state through the IsBusy
property.

Progress change and completion events may be used by GUI's to show the progress and outcome of
long-running download process, providing percentage and other information. Note that the method
doesn’t throw an exception if the download fails. Instead, the completion event must be handled in or-
der to get that information.

Another firmware location may be activated, and the currently active firmware location can be queried.

Whenever a firmware download cannot be completed (for example because of a checksum error), the
firmware infrastructure ensures that it can never be activated.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 49/74

Firmware Update
Transferring Firmware

Given an ITamDevice instance device and a string file with the path to a .TAMfw file, the code to per-
form a firmware update could look like this:

IProduct product = device.Station;
FirmwareUpdater updater = await product.GetPackageUpdaterAsync();
await updater.UpdateAsync(file);

CautionCaution When transferring a new firmware with a new register layout in a Base/Application infra-
structure, the link needs to be re-identified because device IDs are considered static to the
TAM Software.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 50/74

Figure 20: The Firmware API

The firmware related functionality of a product is accessed by its updater. A new firmware may be applied by start-
ing a download. Switching between different feature sets might be prohibited.

TamAdapter

TamNodeComposite<TamSystem, TamLink>
Abstract Class

TamStation

TamNodeComposite<TamLink, ITamNode>
Sealed Class

ProductInfo

FirmwareUnit
Class

Properties

IsEthercat : bool
MajorRevision : ushort
Name : string
Revision : string

Nested Types

OptionModuleInfo
Sealed Class

Properties

Description : string
Name : string
Revision : string

FirmwareUnit
Abstract Class

FirmwareUpdater
Abstract Class

Fields

DefaultFileExtension : string

Properties

IsBusy : bool
KnownExtensions : IEnumerable<string>

Methods

CheckFirmwareFile() : string (+ 1 overload)

GetTargetReadiness() : string
GetTransferInformation() : string
Update() : void (+ 3 overloads)
UpdateAsync() : Task (+ 5 overloads)

IFirmwareRelease

IEquatable<IFirmwareRelease>
IComparable<IFirmwareRelease>
IFormattable
IComparable

InterfaceIProduct
Interface

Properties

SerialNumber : string

Methods

GetPackageUpdaterAsync() : Task<FirmwareUpdater>

IFormattable

FirmwareRelease

OptionA

OptionB

ProductInfo

11 Simulation

Simulation facilitates software development when hardware is not yet ready or to set up efficient and
cost-effective testing environments.

11.1 Simulated Features

The TAM simulation can be used like a hardware topology and is extensible.

It mainly implements the Tria-Link protocol from a device perspective, by executing the Tria-Link com-
munication commands issued by the TAM API, and providing the set up needed for data acquisition.

The simulation provides a simplified path planner. It does not include the stand-alone mode or
firmware updates. Physical aspects are not simulated by default. For example, movement only uses po-
sition and velocity values, and the actual measured position always equals the value forced by the path
planner. Current and position controllers are not implemented.

This behavior may be refined by extending the simulation to special needs. This extensibility is out of
the scope of this document. Please contact us if you are interested.

11.2 Creating Simulated Environments

The TAM API provides two fundamental ways to create simulations, both yielding one or multiple in -
stances of the SimulatedTriaLinkAdapter class. These instances are passed with the
AddLocalTamSystem method of the TamTopology class, resulting in a topology working without
hardware.

TamTopology topology = ...;
SimulatedTriaLinkAdapter simulatedTriaLinkAdapter1, simulatedTriaLinkAdapter2 = ...;
TamSystem s = topology.AddLocalTamSystem(null, simulatedTriaLinkAdapter1,
simulatedTriaLinkAdapter2);

A simulated Tria-Link adapter can be set up from a TAM Configuration, or explicitly. The latter is out of
the scope of this document.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 51/74

Simulation
Creating Simulated Environments

The TAM Configuration is passed to a simulation factory method which exactly emulates the existing
adapters, links and devices. As a consequence, the same TAM Configuration can be applied to a TAM
Topology which is instantiated using the simulated environment.

The code below demonstrates the SimulationFactory class.

Deserializer d = new Deserializer();
LoadResult result = deserializer.Load("topology.xml");
SimulatedTriaLinkAdapter[] simulatedAdapters;
if (result.Errors != null) {
 throw new Exception("Load errors during TAM configuration loading.");
} else {

 // Create a simulated system from a TAM configuration.
 simulatedAdapters = SimulationFactory.CreateSimulatedTriaLinkAdapters(d.Configuration, null);
}

The second parameter of the factory method is an extension point.

NoteNote You still need to load the TAM Configuration afterwards, as described in section 8.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 52/74

12 Deployment

Applications built on top of the TAM Software mainly reference the Tam.dll. However, a great number
of other libraries are also needed, depending on what features you need. If a library is missing in the ex-
ecutable directory, the system won't work as expected.

As a rule of thumb, you need to deploy anything set up by Triamec’s NuGet packages. Installing the TAM
Software on the target machine is a prerequisite, for the following reasons:

 Installs drivers.
 Installs support libraries in the GAC used by the Triamec.Tam.UI NuGet package.

LimitationLimitation
If you want to integrate the TAM System Explorer into your application, running it as a 32-
bit process on a 64-bit operating system is not currently supported out of the box. You’ll
need to install the TAM Software on a 32-bit operating system and export the
NationalInstruments.UI.Styles3D library out of the GAC there.

Windows XP is no longer fully supported. Your project needs to target .NET framework ≤ 4.0, and devel-
oper and target machine need a TAM SDK < 7.0 installed. Some features introduced as of TAM SDK 7.0
might not be present in the .NET framework 3.5 version of the libraries packed with the NuGet pack-
ages, most notably support for the new firmware file format introduced in 2017.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 53/74

13 Advanced Topics

This chapter comprises some features which are only of interest for customers with special needs.

13.1 DevOps Recommendations

Working with NuGet packages introduces an additional level of complexity you need to tackle.

Here are some recommendations with respect to continuous integration.

13.1.1 Manage NuGet Locations

We recommend to set up a place where all NuGet packages used by your project/department/organiza-
tion are hosted. A local feed should be the right tool for many uses.

CautionCaution You need to preserve all NuGet packages used over time, since your revision control system
won’t typically include these binary assets.

Next, register this local feed in the nuget.config file.

Here is an example a nuget.config could look like:

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <packageSources>
 <add key="Acme" value="\\Acme\Nuget" />
 </packageSources>

 <disabledPackageSources>
<add key="nuget.org" value="true" />

 </disabledPackageSources>

 <activePackageSource>
 <add key="Acme" value="\\Acme\Nuget" />
 </activePackageSource>
</configuration>

CautionCaution Avoid directly referencing libraries which are also pulled in with some NuGet package in a
solution with many projects. That said, Visual Studio should warn you if a project uses
more than one version of a library. But you won’t see NuGet packages to consolidate when
managing NuGet packages for solution.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 54/74

https://docs.microsoft.com/en-us/nuget/tools/package-manager-ui#consolidate-tab
https://docs.microsoft.com/en-us/nuget/tools/package-manager-ui#consolidate-tab
https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file
https://docs.microsoft.com/en-us/nuget/reference/nuget-config-file#package-source-sections
https://docs.microsoft.com/en-us/nuget/hosting-packages/local-feeds

Advanced Topics
DevOps Recommendations

13.1.2 Enable Package Restore in CI

When using command line builds, consider introducing a build step where NuGet packages get restored
if needed. This ensures that the packages will be installed even when not building inside Visual Studio,
where packages are automatically restored upon build.

In MSBuild, this could look like this:

 <!-- RestoreExternals

 Pulls external libraries and tools not checked-in into source control into this local copy of
 the repository.

 [IN] @(solutions) full paths of solutions containing information about which external libraries
 are needed.
 -->
 <Target Name="RestoreExternals" Returns="%(solutions.Identity)">

 <!-- Force target batching because, otherwise, we'd have multiple Restore x arguments. -->
 <ItemGroup>
 <_RestoreNuGetArg Include='"$(NuGetClient)"'/>
 <_RestoreNuGetArg Include='Restore "%(solutions.Identity)"'/>
 <_RestoreNuGetArg Include='-MSBuildPath "$(MSBuildBinPath)"'/>
 </ItemGroup>

 <Exec Command="@(_RestoreNuGetArg,' ')"/>
 </Target>

Hereby $(NuGetClient) represents the path to the executable of the NuGet Client command line in-
terface.

13.2 Setup Protection

As a system supplier, you can protect your setup with a password. This can reduce support incidents
due to modifications by unauthorized personnel through the TAM System Explorer.

The TAM API itself doesn’t protect any resources, but provides the means to enable and consider setup
protection state through the ITamDevice.Protection interface. Use this in your setup application
for the finalization steps.

RemarkRemark The APIs accept a password argument. The SetupProtector UI component of the Tri-
amec.Tam.UI NuGet, which is also leveraged by the TAM System Explorer, requires a user
name and a password. It simply collates those two strings together and passes them to the
ITamDevice.Protection interface.

CautionCaution You must manage the password such that it doesn’t get lost. If you forget the password,
you will need to contact Triamec support.

CautionCaution Since the password is hashed with a weak algorithm, don't reuse a sensible password.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 55/74

Advanced Topics
Local-Bus Registers

13.3 Local-Bus Registers

Beneath the registers described in chapter 4, some devices expose a set of peripheral registers located
on the device’s local bus. The terms periphery and local-bus are used interchangeably in this document.

Largely undocumented, they are basically an internal implementation detail. However, in alpha testing,
customers might need to access such registers. The namespace Triamec.Tam.Periphery provides
the respective classes.

CautionCaution Only use these APIs when instructed so by Triamec. Mark your code as intermediate such
that a reviewer can look out for an updated method to accomplish the task.

The local-bus provides access to a set of local-bus devices. The registers on these devices can basically
be writable or read-only. Due to their low level nature, reading a register might also have some side-ef-
fect, or there might be a write-only register.

Access the periphery via the IPeripheryLayoutOwner interface, implemented by adapters, stations
and option-modules with an FPGA soldered on them.

Individual devices can be enumerated or retrieved by an identification key.

It’s possible that the local-bus offers more than one device with the same key. The devices have an in-
dex to distinguish them. This index is sometimes called the local-bus axis, but isn’t stringently related to
the axes of a drive.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 56/74

Figure 21: Accessing the local-bus

Advanced Topics
Local-Bus Registers

With the device in hand, define peripheral registers on them by constructing an instance matching the
specification. The most commonly used type is PeripheryUInt with a width of 32 bit.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 57/74

Figure 22: Get a peripheral device

Advanced Topics
Local-Bus Registers

The following example shows how to read a local-bus register.

PeripheryDevice eimTimingDev = station.Periphery.GetDevice(PeripheryDeviceIdentification.Service);
var imxRdMinMaxReg =
 new PeripheryReadonlyUInt(eimTimingDev, null, null, null, PeripheryAccess.Read, 0x32, 32);
uint imxRdMinMaxVal = imxRdMinMaxReg.ReadValue();

Option modules are available as children of the station node. For example, to access a pulse train op-
tion module in slot B, write:

PeripheryLayout periphery = ((IPeripheryLayoutOwner)station["PT (B)"]).Periphery;

For some option module local-bus devices, you might need to use the SecondaryPeripheryDevi-
ce-Identification enum and cast it to PeripheryDeviceIdentification, if the latter doesn’t
contain the device’s key.

13.4 Working With Multiple Register Layouts

An advanced scenario includes writing code which works with more than one register layout. Only use

SWNET_TamApiDeveloperManual_EP049 2024-08-02 58/74

Figure 23: Local-bus register types

Advanced Topics
Working With Multiple Register Layouts

the following outlined methods when strictly necessary in order to hold your code readable.

We recommend to introduce a wrapper class which abstracts away the usage of different register lay-
outs.

using Register_DUT1 = Triamec.Tam.Rlid4.Register;
using Register_DUT2 = Triamec.Tam.Rlid5.Register;
using Register_DUT3 = Triamec.Tam.Rlid19.Register;

class DutRegister {

readonly Register_DUT1 _dutReg1;
readonly Register_DUT2 _dutReg2;
readonly Register_DUT3 _dutReg3;

public DutRegister(ITamDevice dut) {
_dutReg1 = dut.Register as Register_DUT1;

_dutReg2 = dut.Register as Register_DUT2;
_dutReg3 = dut.Register as Register_DUT3;

}

…
}

This class provides different registers based on the layouts it supports:

public ITamReadonlyRegister<float> Voltage =>
 _dutReg1?.Axes[0].Signals.CurrentController.ControllerOutputQ
?? _dutReg2?.Axes[0].Signals.CurrentController.ControllerOutputQ
?? _dutReg3?.Axes[0].Signals.CurrentController.DesiredVoltageQ;

Alternatively, it might be possible to work down the register tree with the following pattern:

RegisterComposite composite = device.Register;
composite = composite["General"] as RegisterComposite;
composite = composite["Signals"] as RegisterComposite;
var register = composite["TriaLinkTimestamp"] as ITamReadonlyRegister<int>;

Finally, different register layouts can be addressed by using the tags infrastructure as described in the
next paragraph.

13.4.1 Tagging

A register may be tagged with one or multiple keys, such that a register can be found without the exact
knowledge of the layout. Tags may alternatively be defined as key-value pairs.

NoteNote This is an advanced concept only used when writing some sort of generic code which needs
to work with different register layouts.

The FindTaggedComponent, FindTaggedComponents and FindTaggedComposite methods on a
register component search for registers under that component.

The keys are always unique relative to a subtree of the layout. For example, the axis signal tags are as -
signed once per axis in a drive. If a drive has three axes, three registers will be found when searched on
the root register. Therefore, one might probably first search the axis root (using the axes tag), and then
the axis related register.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 59/74

Advanced Topics
Working With Multiple Register Layouts

Alternatively, use the TamAxis.FindReadonlyRegister and TamAxis.FindRegister convenience
methods. They can even be used to find general device registers.

NoteNote The set of defined tags evolves with new versions of the TAM API, and some tags may only
be defined in certain register layouts, while they are missing in others. For example, the
Axes tag might not be defined in a register layout designed for an I/O module.

13.5 Customer Settings

Management of preferences is a task which needs to be solved for every application. The TAM Software
uses the standard .NET way, application settings, for its internal configuration, with some extensions.
Preferences allow an application to be configured in the field without rebuilding it. The Triamec

SWNET_TamApiDeveloperManual_EP049 2024-08-02 60/74

Figure 24: The most commonly used register tags

Register tags are used to find specific registers in a general register tree where the exact structure is not known. For
example, the actual position signal may be found by searching for the AxisSignalTags.ActualPosition
tag within the root register.

AxisParameterTags
Static Class

Fields

AngleSearchTime
CurrentControllerErrorLimitD
CurrentControllerErrorLimitQ
CurrentControllerKrD
CurrentControllerKrQ
EncoderLines
EncoderPitch
EncoderType
EnvironmentNominalCurrent
Homing
PathPlannerDynamicReductionFactor
PathPlannerModuloPositionMaximum
PathPlannerModuloPositionMinimum
PathPlannerVelocityMaximum
PositionControllerErrorLimit
PositionControllerKr
PositionControllerParameters

AxisSignalTags
Static Class

Fields

ActualPosition
AnalogEncoderCosine
AnalogEncoderSine
CommutationToEncoderAngle
CurrentControllerActualCurrentQ
CurrentControllerEnabled
CurrentControllerErrorQ
PathPlannerAcceleration
PathPlannerDoneSignal
PathPlannerPosition
PathPlannerVelocity
PositionControllerOutputCurrentQ

CommonTags
Static Class

Fields

Axes
CommitSwitch

GeneralParameterTags
Static Class

Fields

CycleTime
MotorBaseConfiguration
PwmTimeResolution

GeneralSignalTags
Static Class

Fields

Timestamp

TamaTags
Static Class

Fields

TamaAsynchronousMainCommand
TamaAsynchronousMainState
TamaIsochronousMainCommand
TamaIsochronousMainState
TamaVariable

AxisCommandTags
Static Class

Fields

CurrentControllerTestSignalAddToIn …
PathPlannerCommand
PathPlannerCouplingTimestamp
PathPlannerNewAcceleration
PathPlannerNewPosition
PathPlannerNewVelocity

Advanced Topics
Customer Settings

workspace contains most of the application settings.

13.5.1 Preferences

The preferences mechanism included in the TAM Software builds a bridge between the two .NET infra-
structures application settings and property descriptors. The most common usage is the ability to popu-
late a PropertyGrid with application settings.

The most important class is the Triamec.Tam.UI.PreferencesDialog form which you can easily
integrate in your application. From scratch, it will show TAM Software specific settings, but adding your
own settings is straightforward:

1. In the settings tab of the properties of your Visual Studio project, create some settings.
2. Click on the “View Code” tool-bar button. This will generate a new file.
3. Import the namespace Triamec.Configuration.
4. Let the class inherit from IPreferences.
5. Add the following code snippet to the class:

#region IPreferences members
IEnumerable<SettingsPreferenceDescriptor> IPreferences.Preferences {
get {

var preferences = new List<SettingsPreferenceDescriptor> {
new Preference(this, "<Settings property name>", "<Pretty setting name>",

"<Category>")
};

if (Preference.ShowAdvancedContent) {
preferences.Add(new Preference(this, "<Settings property name>",

"<Pretty setting name> (advanced)", "<Category>"));
}

Preference.AddDebugPreferences(preferences, this);

return preferences;
}

}
#endregion IPreferences members

As the listing indicates, you can define normal, advanced and debug preferences. Only those set-
tings defined here will show up in the preferences dialog. The string “<Settings property
name>” needs to be the name of an existing settings property in the class. The categories build a
flat hierarchy.

6. In the constructor, add the line

this.RegisterForAdditionalServices();

In conjunction with using a TamTopology, this will automatically save changed settings as the ap-
plication exits. This also works if you skip steps 4 and 5 above, as long as you declare the class as
implementing IApplicationSettings. Note that the base class already implements this inter-
face completely.

7. Before any namespace scope, add the line

[assembly: Preferences(typeof(<your namespace>.Settings))]

where <your namespace> is the namespace in which the class resides.

All you have to do now is to make use of the PreferencesDialog form. The Description property
of the setting will show up in the dialog. Application scoped settings will be read-only.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 61/74

Advanced Topics
Customer Settings

If the setting's type is an enumeration from which you have the sources, you may decorate the enumer-
ation's fields with Description attributes. They will be shown in a drop-down list instead of the field
names.

13.5.2 Triamec Workspace

The workspace is a file repository on disk with configurations, settings and measurements related to the
setup of Triamec drives. Most application settings defined by the TAM Software are persisted in the
workspace.

Workspace Updates

Each workspace is tied to one version of the TAM Software. If an application built against a different
version of the TAM Software opens the workspace, the workspace is updated.

The default behavior is to mark the Triamec workspace with the new version. This can be changed such
that the version is not touched: Subscribe to the Workspace.Updating event. In the handler, set the
Update property to WorkspaceUpdate.Ignore.

Leveraging the Workspace

The Triamec.Configuration.Workspace class provides paths into the workspace which can be
used to save application specific assets into the workspace.

You may wish to save your own settings in the workspace, which can be accomplished in two ways:

 In the settings designer, each setting has a Provider property. Set this property to the value
Triamec.Configuration.WorkspaceSettingsProvider. Those settings where this provider
is set will be persisted in the workspace.

 If you want to persist all of your settings in the workspace,
a) Press View Code in the tool-bar of the settings designer.
b) Decorate the settings class with the attribute

[SettingsProvider(typeof(WorkspaceSettingsProvider))].

Your settings will appear in a .config file in the Settings (formerly TAM\Settings) workspace
folder. The settings group name defaults to the default project namespace with additional sub-names-
paces according to the names of the sub-folders where the settings are defined within the project. The
class name is also appended. This group name can be overridden by decorating the settings class with
the SettingsGroupName attribute.

In order for your settings to be reloaded when the user changes the workspace, refer to step 6 in chap-
ter 13.5.1.

Have a look at the DirectFeed sample which integrates the workspace.

Private Workspace

Sometimes it’s not desired that an application interferes with the settings made to the default
workspace. This section describes how to set up the workspace to be private to the application. Refer
to the Acquisition sample project as an example.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 62/74

https://github.com/Triamec/Acquisition
https://github.com/Triamec/DirectFeed

Advanced Topics
Customer Settings

Step 1: Set up a workspace

A workspace consists of a directory containing a TAM workspace file. This is a file containing application
configuration similar to app.config. with the .TAMws extension. As a seed, copy the .TAMws file from
the default Triamec workspace (locate it using menu File > Open Workspace Folder in TAM System Ex-
plorer) into your project and ensure it’s copied to the output directory.
Open your workspace file and make the desired adjustments.

Step 2: Use the workspace

In order to let your application use its own workspace, complement its app.config as follows:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <configSections>

 <!--(…)-->

 <sectionGroup name="userSettings"
 type="System.Configuration.UserSettingsGroup, System, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089">

 <section name="Triamec.Workspace"
 type="System.Configuration.ClientSettingsSection, System, Version=4.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089"
 allowExeDefinition="MachineToLocalUser"
 requirePermission="false"/>

 </sectionGroup>
 </configSections>

 <!--(…)-->

 <userSettings>

 <Triamec.Workspace>
 <setting name="WorkspaceFile" serializeAs="String">
 <value>Workspace.TAMws</value>
 </setting>
 </Triamec.Workspace>

 </userSettings>

 <!--(…)-->

</configuration>

This points the workspace API to the desired workspace, relative to the Triamec.Common.dll library
loaded by your application. This library is typically located beneath the executable.

13.6 Customer Hardware

One of those special needs is when customers create their own Tria-Link hardware. This brings in the
requirement for some extension points within the TAM API library reference. It is possible to set up
brand new hardware without the need for a new version of the TAM API library reference.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 63/74

Advanced Topics
Customer Hardware

13.6.1 Custom Product Types

New products must be registered with TAM using the Triamec.TriaLink.ProductType.Register
method. Some specific properties need to be passed additionally to informational arguments. These
are used by TAM to create the appropriate interfaces for the new device.

Alternatively, the UserProductType application setting allows configuring new product types without
compiling any line of code. The application configuration file shipped with the TAM System Explorer
contains a template for demonstration.

If a new product is connected without being registered beforehand, it will show up as Unknown device.

Internally, the product type is one property used to uniquely identify a specific device. Another docu-
mentation, the TAM Device Identifications Developer Documentation, defines requirements and usage
of all identifiers returned by devices.

In order to retrieve the product type you type:

IUpdatable adapter_station_or_device = ...;
Console.WriteLine(adapter_station_or_device.HardwareIdDetails.ProductType);

13.6.2 Custom Register Layouts

Please get familiar with chapter 4 about Registers before advancing in this section.

New devices usually have a new register layout. Firmware upgrades may come with a changed layout,
too. It is possible for the device manufacturing site to deploy a corresponding register catalog together
with the hardware. The TAM Software does not need to be redeployed, because it will find the new reg-
ister catalog and instantiate the new device's register using that catalog.

User applications need to be recompiled if they rely on specific register layouts. If they solely rely on
register tags, they may not need to be rebuilt.

One constraint is that the register catalog must have been built against that exact version of the TAM
Software.

In order to support plug & play insertion of new device types, the LayoutManager in the Tria-
mec.Tam namespace provides the UnknownLayout event. This enables a customer framework to ship
device specific application software – including the register catalog – together with the new device and
to establish an automatic installation mechanism.

LayoutManager.Instance.UnknownLayout +=
 new UnknownLayoutEventHandler(OnLayoutManagerUnknownLayout);

The event handler needs to copy the register catalog such that the following procedure will succeed:

Assembly assembly = Assembly.Load("RegisterLayout." + tamDevice.RegisterLayoutId);

In other words, register catalogs need to follow a strictly defined naming scheme, and one register cata-
log must always contain only one register layout.

string OnLayoutManagerUnknownLayout(object sender, UnknownLayoutEventArgs args) {
 // pseudo definition code
 uint myNewRlid = 9u;
 string sourceDirectory;
 string myNewRegisterLayoutAssembly = LayoutManager.REGISTER_LAYOUT_NAME + '.' +
 myNewRlid+".dll";

SWNET_TamApiDeveloperManual_EP049 2024-08-02 64/74

Advanced Topics
Customer Hardware

 // check whether we can provide a new layout for the request
 if ((args.LayoutType == LayoutType.Register) && (args.Id == myNewRlid)) {

 // copy my new register layout to the executing directory
 File.Copy(
 Path.Combine(sourceDirectory, myNewRegisterLayoutAssembly),
 Path.Combine(Path.GetDirectoryName(
 Assembly.GetExecutingAssembly().GetName().CodeBase),
 myNewRegisterLayoutAssembly), false);

 // return simple assembly name without version and public key information
 return Path.GetFileNameWithoutExtension(myNewRegisterLayoutAssembly);

 } else {
 return null;
 }

}

This example event handler knows where to get register layout 9. If the event arguments indicate that
this register layout is requested, it copies the new register catalog to the application directory.

13.6.3 Extending Enumeration Registers

A framework, such as the TAM Software, may impose a general enumeration type upon a certain regis-
ter. New specific values may need to be added to the enumeration of that register without the need of
recompiling the framework.

While it is not possible to directly adding values to the general enumeration type without recompiling
the framework, enumerations allow having arbitrary integer values or values from other enumeration
types casted to itself.

Before going into the details, lets consider an example, the register tagged with GeneralSignal-
Tags.DeviceError. This register is supposed to have values of the general type DeviceErrorIden-
tification. However, a firmware writer may redefine the register to have values of a specific enu-
meration. This allows her to define additional device-specific errors in the same manner as in general
firmware areas, where general DeviceErrorIdentification values are used.

Step-Through Guide

Go through this instructions in order to extend a register. The device error example is continued.

Refining the register
First, define a new enumeration within the register layout XML file:

<Enum flags="false" prefix="RDEt" name="KnackerErrorIdentification">
 <Descriptions>
 <Description cultureInfo="en">Error identification for the Knacker.</Description>
 </Descriptions>

 <EnumValue prefix="RDEeDRVERR_" name="KnackerJam" value="128">
 <Descriptions>
 <Description cultureInfo="en">The knacker has a jam.</Description>
 </Descriptions>
 </EnumValue>

 <EnumValue prefix="RDEeDRVERR_" name="KnackerBroken" value="129">
 <Descriptions>
 <Description cultureInfo="en">The knacker is broken.</Description>
 </Descriptions>

SWNET_TamApiDeveloperManual_EP049 2024-08-02 65/74

Advanced Topics
Customer Hardware

 </EnumValue>
</Enum>

Don't repeat the general values, just define the new ones. Start with values far above the general val-
ues in order to allow the general enumeration to grow.

Change the register from

<Member name="deviceError" type="DeviceErrorIdentification">

to

<Member name="deviceError" type="KnackerErrorIdentification" headerType="int"
 converter="ExtendedEnumRegisterValueConverter<DeviceErrorIdentification>">

The headerType attribute forces the register's type to int in the generated header file. Because every
enumeration is implicitly casted to int in C, this doesn't brake existing firmware code, while allowing to
directly assign values from the KnackerErrorIdentification enumeration.

The converter attribute specifies the DeviceErrorIdentification type as general enumeration.
In the TAM System Explorer, the register will be shown with the correct value, either from the general
or the specific enumeration.

NoteNote You cannot currently use this converter for writable registers. If a writable register's enu-
meration is refined in the described way, only values from the specific enumeration can be
selected in the TAM System Explorer, unless you provide your own custom converter. One
way to circumvent this limitation would be to copy the values from the general enumera-
tion into the specific enumeration. However, doing so is not recommended as it breaks the
single source principle and forward compatibility of the device-specific code.

Using the register in the firmware
As written above, the register will have type int. Assigning a value from the specific enumeration to
the register is trivial. Getting a value can be done using a cast.

Existing references to the register don't need to be fixed.

Using the register in the application
Assume the KnackerErrorIdentification is defined in register layout 11000.

Evaluate the register directly:

using Triamec.Tam.Rlid11000;
...
var error = register.General.Signals.DeviceError.Read();
if (error == KnackerErrorIdentification.KnackerJam) ...
if ((DeviceErrorIdentification)error == DeviceErrorIdentification.ExternalError) ...

The same through a framework API:

using Triamec.Tam.Rlid11000;
...
DeviceErrorIdentification error = device.ReadDeviceError();
if ((KnackerErrorIdentification)error == KnackerErrorIdentification.KnackerJam) ...
if (error == DeviceErrorIdentification.ExternalError)

The same usage holds when using the register in a Tama program. Note that casts from one enumera-
tion to another won't have any performance impact to existing code.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 66/74

Advanced Topics
Customer Hardware

Occurrences in the TAM Software

The only tagged registers currently supported by the TAM Software to be extended in the described
way are the DeviceError and AxisError registers. Values read from these registers are always ex-
posed using the general types DeviceErrorIdentification and AxisErrorIdentification, re-
spectively. Device-specific code may safely cast these values to the specific enumeration type as
needed.

LimitationLimitation

The specific error enumeration should not have values greater than 255 for DeviceError
and 511 for AxisError because of its occurrence in the ITamDevice.Transition
event. At the same time, values should not be smaller than 64 in order to allow the general
DeviceErrorIdentification and AxisErrorIdentification to grow over time.

You may use this technique with other registers as long as they are not referred by the tags defined by
the TAM Software, i.e., if they don't have some general meaning to the TAM Software.

13.6.4 Log Tria-Link Traffic

Firmware or hardware issues often manifest themselves in the form of communication timeouts or
other malfunction in an application. In order to help to track down such failures, it is possible to log all
traffic over the Tria-Link channel.

This feature can be enabled in two ways.

Configuring Trace Listeners

One of the Listeners of the Triamec.Diagnostics.Log.Source must have its Filter set to an
EventTypeFilter whose EventType subsumes SourceLevels.Verbose.
This can be accomplished by adding the following snippet to the application configuration:

<system.diagnostics>
 <sources>
 <source name="Log">
 <listeners>
 <clear/>

 <add name="WorkspaceHigh"
 traceOutputOptions="DateTime"
 type="Triamec.Diagnostics.WorkspaceTraceListener,Triamec.Common"
 initializeData="high"
 maxFileSize="10000000">
 <filter type="System.Diagnostics.EventTypeFilter" initializeData="Warning" />
 </add>

 <add name="WorkspaceLow"
 traceOutputOptions="DateTime"
 type="Triamec.Diagnostics.WorkspaceTraceListener,Triamec.Common"
 initializeData="all"
 maxFileSize="10000000">
 <filter type="System.Diagnostics.EventTypeFilter" initializeData="Verbose" />
 </add>

 </listeners>
 </source>
 </sources>
</system.diagnostics>

SWNET_TamApiDeveloperManual_EP049 2024-08-02 67/74

Advanced Topics
Customer Hardware

This snippet retains the existing logging behavior apart from including verbose messages into the all
workspace log. For a simpler example how to configure the listeners, see the TextWriterTraceListener
remarks. Note, however, that addressing the Log source is mandatory.

Setting a Preference

Alternatively, set the Log Tria-Link traffic preference in the Communication (advanced) section of the
Preferences dialog. This preference is persisted in the Triamec workspace. The preference is ignored
when verbosity is configured using the trace listener.

The trace listener configuration approach conceptually enables more logging than just Tria-Link traffic.
This is not the case with the preference approach.

For performance reasons, you need to restart the application for any configuration or settings change
to become effective.

13.7 Life-Cycle Considerations

Using the TAM System Explorer, you might have realized that some instances in the topology have lim-
ited lifetime. For example, a device attached via USB might be disconnected.

Depending on the use-case of your application, you might need to track new instances or disposal of
such instances. Working with disposed instances will cause ObjectDisposedExceptions.

The following list depicts and discusses changes down the hierarchy.

 Workspace Changes
The TAM Topology saves connection settings and other details in the current workspace (see section
13.5.2). Opening another workspace should therefore lead to the disposal of the old TAM Topology
and the set-up of a new TAM Topology.
The straightforward way to implement this is by restarting the application. The Eclipse IDE is a
prominent example for this approach.

 Connections
TamSystems may be connected or disconnected from a TamTopology.

 Hot-plugging and Surprise-removal
TamAdapters as well as TamLinks may appear or disappear spontaneously.

 Adapter Reset
When resetting a TamAdapter, all of its TamLinks might be removed and repopulated.

 Link Booting
When identifying or initializing a TamLink, all of its TamStations will be removed and repopulated.

 Firmware Upgrades
In a Base/Application firmware infrastructure (see section 10.1), the subscriptions on the device are
reset upon firmware upgrade.

 Axis Changes

SWNET_TamApiDeveloperManual_EP049 2024-08-02 68/74

https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.textwritertracelistener#remarks
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.textwritertracelistener#remarks

Advanced Topics
Life-Cycle Considerations

When setting a new Motor Base Configuration on an ITamDrive, its TamAxis instances will be re-
moved and the Axes property repopulated (only old generation drives).

Objects which use instances from the TAM Topology often have observing character. There are different
options for listening to the above changes:

 Use the IComponent.Disposed event. Some, but not all instances in the TAM Topology imple-
ment the IComponent interface. If an instance doesn't implement IComponent, navigate up the
hierarchy using ITamNode.ParentNode until you find an IComponent instance.

 Use the ITamNodeComposite.NodesChanging event.
Since this event is fired for new as well as for removed nodes, the instances returned by the
NodesChangingEventArgs.ChangingNodes need to be tested, see the remarks in the reference
documentation.
This approach has the drawback that the event must be subscribed on all hierarchical levels.

For subscription reset, there is not currently an event in the TAM API, nor will the
ISubscriptionManager instance reflect that reset.

13.8 Versioning

The different NuGet packages comprising the TAM Software are versioned independently of each other.
That is, a new version of the TAM Software doesn’t contain a new release of each of the NuGet pack-
ages.

The NuGet package version numbers conform to Semantic Versioning ([17]). The public API comprises
the following elements:

 APIs from the Tam.dll assembly from the following core namespaces:
 Triamec.Tam
 Triamec.Tam.Acquisitions
 Triamec.Tam.Configuration
 Triamec.Tam.Registers
 Triamec.Tam.Requests
 Triamec.Tam.Subscriptions

 The non-advanced user settings provided in the Preferences dialog of the TAM System Explorer.

This list will grow as APIs get commonly used and stable.

API breaking changes are typically done such that old APIs are still present, but marked with an
ObsoleteAttribute. This also holds for most APIs not listed above.
When using another programming environment like Python or Matlab, this attribution isn’t accessible.
However, many of the obsolete API will throw an appropriate error message at runtime.

You might get a prerelease-version of the TAM Software. Such releases denote testing or experimental
versions and may introduce incompatible and unstable API changes.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 69/74

Glossary

Firmware Code, executed by the microprocessor on a TAM Device. Also referred to as image.
See chapter 10 how to update the firmware of a device.

GAC Global assembly cache where .dlls are installed for machine-wide access [18]

Module A TAM module is a plug-in instance associated with a TAM Device which may con-
tain 3rd party functionality.

Parameter In a context of registers (chapter 4), a parameter is referred to as a register con-
tributing to the parametrization of a TAM Device. As such, it is committable and
saved in the TAM Configuration (chapter 8) and/or persistent on the device (chapter
9).

In the context of modules, a parameter is a special property of a module compo-
nent class persisted by the TAM Configuration and enumerated by the module in-
frastructure. In the TAM System Explorer, they are shown in a special Parameters
tab page. Most often, such parameters save information not present in register pa-
rameters, for example the results of an encoder calibration.

PLCopen PLCopen is an association engaged in standards for automation and motion ([16]).

Register Registers is the most important concept of the TAM API to communicate with TAM
Devices. An introduction is given in chapter 4.

Schedule Table of deposited Tria-Link messages to be sent over the Tria-Link one by one in
real-time at specified relative times. See section 6.5 for an introduction.

Station Uniquely addressable party within the Tria-Link.

This is typically one-to-one related with a TAM Device, but there exist hardware de-
vices seen as multiple stations.

This term is used when talking about communication within the Tria-Link, because
the Tria-Link protocol does not know about TAM Devices.

Subscription A publish/subscribe mechanism in order to exchange Register data between Tria-
Link stations in real-time and to establish data acquisition from the computer. See
chapter 5.

TAM Triamec Advanced Motion.

Term used for software produced by Triamec Motion AG to support their and pro-
prietary drives talking the Tria-Link protocol.

TAM Configuration Configuration framework for computer-side persistency of the parameter registers,
the naming within the topology, and module configuration. See chapter 8 for an in-
troduction.

TAM Device Hardware device with a microprocessor implementing the Tria-Link protocol, such
that it can be represented by the TamDevice class of the TAM API.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 70/74

Glossary

TAM Topology The object oriented tree containing corresponding instances of all hardware devices
with their respective capabilities.

Tama Solution stack allowing users to easily write code running in real-time on TAM De-
vices. The code is organized as a Tama program, transferred and started using the
TamaManager of a TAM Device. The Tama programming language is a subset of C#.

TD-Bus Low-volume collision bus transporting Tria-Link packets to TD-Bus devices such as
the TD servo motor.

Tria-Link 1. A protocol developed by Triamec Motion AG for asynchronous and
isochronous communication with drives.

2. The Ethernet-based, real-time communication layer using a ring topology, de-
veloped by Triamec Motion AG.

Triamec Motion AGTriamec Motion AG is an independent, incorporated company located in Zug,
Switzerland. Since its establishment in 2001, it is owned by the management. The
company provides to its customers its superior knowledge in the field of mecha-
tronics, particular in dimensioning, design and control of highly dynamic systems, as
well as in software engineering as a substantial part.

SWNET_TamApiDeveloperManual_EP049 2024-08-02 71/74

References

[1] The TAM API library reference
Shipped with the TAM Software and TAM System Explorer releases.
Documents the most important dynamic link libraries delivered with the TAM Software re-
leases.

[2] Tria-Link 10kHz Echtzeitbus
http://triamec.com/de/tria-link.html

[3] .NET - Powerful Open Source Cross Platform Development
https://www.microsoft.com/net

[4] Triamec Motion AG, 2008
Short introduction to the Tria-Link protocol and data link layer.

[5] Triamec Motion Servo Drives product home page
http://www.triamec.com/en/products/TS/index.html

[6] TAM System Explorer home page
http://www.triamec.com/en/products/TAM/SystemExplorer.html

[7] Drive Setup Guide
SW_TSD-TSP360-TSP710-Setup-Guide_EP001.pdf, Triamec Motion AG, 2019
How to set up and work with the TAM System Explorer.

[8] Drive-to-Drive Data Exchange with Tria-Link,
AN142_TriaLink-DriveToDriveDataExchange_EP001.pdf, Triamec Motion AG, 2022

[9] Tama Real-Time Drive Programming User Guide
SWTAMA_UserGuide_EP001.pdf, Triamec Motion AG, 2024
Tama program developer manual deployed with the Tama compiler.

[10] Device State Observer
Version 0.10; Triamec Motion AG, 2007
Concept paper about how to observe the device state machine from a PC application in
order to track the execution and completion of commands

[11] TAM Device Identifications Developer Documentation
Version 1.12; Triamec Motion AG, 2006
Document describing the different identifiers defined in the Tria-Link protocol.

[12] NuGet, NuGet Documentation
https://docs.microsoft.com/en-us/nuget/

[13] TAM Software Release Table
SWNET_ReleaseTable_EP001.pdf, Triamec Motion AG, 2018

[14] TAM API Release Notes, SWNET_TamApiReleaseNotes_EP001.pdf, Triamec Motion AG, 2021
[15] Ethernet Interface

Application Note 123, Triamec Motion AG, 2023
[16] PLCopen TC2 home page

http://www.plcopen.org/pages/tc2_motion_control/
[17] Semantic Versioning home page

http://semver.org/
[18] Global Assembly Cache, https://docs.microsoft.com/en-us/dotnet/framework/app-

SWNET_TamApiDeveloperManual_EP049 2024-08-02 72/74

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/gac
http://semver.org/
http://www.plcopen.org/pages/tc2_motion_control/
https://docs.microsoft.com/en-us/nuget/
http://www.triamec.com/en/products/TAM/SystemExplorer.html
http://www.triamec.com/en/products/TS/index.html
https://www.microsoft.com/net
http://triamec.com/de/tria-link.html

References

domains/gac, Microsoft, 2017

Revision History

Version Date Editor Comment

023 2015-04-01 chm 11: Simulation: Adapt breaking changes; Added section 13.7: Life-Cycle Considera-
tions.

024 2015-11-25
2015-11-26
2015-12-10

chm
chm
chm

4.2: Committing: Dropped possibility to read shadow.
Error: Reference source not found: Error: Reference source not found: Added note
about the need to load it twice.
5: Subscriptions and Acquisitions: Revisions according to most recent API changes.

025 2016-08-08 chm 5.4: Acquisitions: Added usage pattern.

026 2016-12-23 chm 11: Simulation and 12: Deployment: Adapt breaking changes.

027 2017-03-15

2017-05-08

chm

chm

10: Firmware Update: Change to package format.
12: Deployment: Adapt breaking changes.
The motor base configuration is no longer used in new generation drives.

028 2017-08-29
2017-08-08

chm
chm

Simplify application development and deployment with NuGet packages.
The workspace can now be leveraged by third-party applications out of the box.

029 2017-08-30
2017-09-13

chm
chm

2.2: NuGet Distribution: Fix link to NuGet downloads.
2.1: Concepts: Revise introduction of modules.

030 2018-03-13 chm Added section 13.1: DevOps Recommendations. Updated section 13.8: Versioning.

031 2018-07-10 chm Added new reference to the TAM SDK Release Table in 2.2: NuGet Distribution

032 2018-10-15 chm 4.4: Speeding Up With Register Lists revised according to refined implementation

033 2018-11-27
2018-11-28

chm
chm

2.2: NuGet Distribution: Adjust 3d party dependencies
13.7: Life-Cycle Considerations: Adjustments due to new network layer

034 2019-09-23 chm Reflect current products in figures.

035 2019-11-14 chm Added section 13.6.4: Log Tria-Link Traffic

036 2020-11-10 chm Update Figure 12: Axis State Machine. Introduce TamRequest.WaitForSuccess API

038 2021-05-03 chm Minor addition in Error: Reference source not found: Error: Reference source not
found

039 2021-09-15 chm State .NET library support of the NuGet packages

040 2021-09-24 chm The NuGet packages are no longer bundled with the setup

041 2022-02-25 chm Added chapter Private Workspace

042 2022-05-30 chm Better describe axis state machine and asynchronous Tama virtual mac
hine

SWNET_TamApiDeveloperManual_EP049 2024-08-02 73/74

https://docs.microsoft.com/en-us/dotnet/framework/app-domains/gac

Revision History

043 2022-09-28 chm Added chapter 13.3: Local-Bus Registers

044 2022-12-12 chm Added chapters 6.2.1: Control System Treatment and 13.2: Setup Protection

045 2023-02-15 chm Revised chapter 6.4: Coupling

046 2023-05-01 chm, sm Revised chapter 4: Registers

047 2023-06-19 chm Improved documentation for TamSystem. Reflect samples moved to GitHub.

048 2024-04-24 chm Improve figure 2.
Move content of chapter 7: Real-Time Programming with Tama, to the new Tama
Real-Time Drive Programming User Guide [9]

049 2024-08-02 chm Use most convenient methods in chapter 4.4: Speeding Up With Register Lists

SWNET_TamApiDeveloperManual_EP049 2024-08-02 74/74

Copyright © 2024
Triamec Motion AG
All rights reserved.

Triamec Motion AG
Lindenstrasse 16
6340 Baar / Switzerland

Phone +41 41 747 4040
Email info@triamec.com
Web www.triamec.com

Disclaimer
This document is delivered subject to the following conditions and restrictions:

 This document contains proprietary information belonging to Triamec Motion AG. Such information
is supplied solely for the purpose of assisting users of Triamec products.

 The text and graphics included in this manual are for the purpose of illustration and reference only.
The specifications on which they are based are subject to change without notice.

 Information in this document is subject to change without notice.

http://www.triamec.com/
mailto:info@triamec.com

	Table of Contents
	1 Introduction
	2 Overview
	2.1 Concepts
	2.2 NuGet Distribution

	3 Topology
	ITamNode
	TamTopology
	TamSystem
	TamAdapter
	TamLink
	Booting

	TamStation
	TamDevice
	ITamDrive
	ITamScheduler

	4 Registers
	4.1 Retrieving Registers
	4.2 Committing
	4.3 Register Converters
	4.4 Speeding Up With Register Lists

	5 Subscriptions and Acquisitions
	5.1 Subscriptions
	Life cycle
	Down-sampling
	Fast Subscriptions
	Subscription Purpose
	Triggers & Events

	5.2 Setting Up Subscriptions
	5.3 Establishing Data Acquisition
	5.4 Acquisitions

	6 Motion
	6.1 Drive
	6.2 Axis
	6.2.1 Control System Treatment

	6.3 Requests
	Reliability Considerations

	6.4 Coupling
	6.5 Schedules
	6.5.1 Scheduling Example

	7 Real-Time Programming with Tama
	8 Configuration
	8.1 Configuration API
	8.2 Mismatch Resolution

	9 Stand-alone Mode
	9.1 Start-up Process
	9.2 Start-up API

	10 Firmware Update
	10.1 Firmware Infrastructures
	10.2 Transferring Firmware

	11 Simulation
	11.1 Simulated Features
	11.2 Creating Simulated Environments

	12 Deployment
	13 Advanced Topics
	13.1 DevOps Recommendations
	13.1.1 Manage NuGet Locations
	13.1.2 Enable Package Restore in CI

	13.2 Setup Protection
	13.3 Local-Bus Registers
	13.4 Working With Multiple Register Layouts
	13.4.1 Tagging

	13.5 Customer Settings
	13.5.1 Preferences
	13.5.2 Triamec Workspace
	Workspace Updates
	Leveraging the Workspace
	Private Workspace

	13.6 Customer Hardware
	13.6.1 Custom Product Types
	13.6.2 Custom Register Layouts
	13.6.3 Extending Enumeration Registers
	Step-Through Guide
	Refining the register
	Using the register in the firmware
	Using the register in the application

	Occurrences in the TAM Software

	13.6.4 Log Tria-Link Traffic
	Configuring Trace Listeners
	Setting a Preference

	13.7 Life-Cycle Considerations
	13.8 Versioning

	Glossary
	References
	Revision History

