
Triamec Tables

Application Note 125

A description Triamec application tables and how they are used.
Tables are available in firmware 4.11.x and newer and are accessible with a TAM System Explorer ver-
sion 7.15.0 or newer, or with a browser. This application note originated from a division of AN124.

Table of Contents

1 Overview..2

2 Structure..2
2.1 Header...2
2.2 Data..3
2.3 Checksum Calculation...................3

3 Accessibility and Interfaces....................4

3.1 Browser...4
3.2 TAM System Explorer.....................4
3.3 Tama Code.....................................5
3.4 TAM API...6
3.5 Low Level Software Interface........7

Revision History.....................................8

Document AN125_Tables_EP
Version 001, 2025-02-12
Source Q:\doc\ApplicationNotes\
Destination T:\doc\ApplicationNotes
Owner ns www.triamec.com

https://www.triamec.com/
https://www.triamec.com/en/documents.html
https://triamec.com/

1 Overview
Tables can be used in a user real-time application (Tama) or firmware based features such as cogging or
axis compensation. They can store a large amount of numerical data which can be looked up fast. Cur-
rently we support 8 small tables (~16'000 entries) and 2 large tables (~2’000'000 entries)1 for user ap-
plications and one large table for each firmware based feature on each axis.

2 Structure
A table contains a header and data. The table is a binary file, the (numerical) data is a flat sequence of
binary LittleEndian 32bit entries. 64bit entries are realized by occupying two 32bit entries. The header
specifies how to look up the correct data slice based on one, two or three inputs. This data slice can
then be interpreted as integer, float or double value.

2.1 Header
The header fields are shown in the following table.

Word
number

Type Register name Description

0 Bool Persistent 0=Table is Volatile, 1=Table is Persistent

1 Int32 - Must be 0

2 Int32 Type {0=User, 5=CoggingCompensationV1, 10=AxisCompensationV1}

3 Int32 ChecksumMode {0=Ignore, 1=Check, 2=Calculate}, see chapter 2.3

4-15 Int32 Checksum The SHA-3-384 checksum with NIST padding, set zero before calculation.

16-17 Int64 Date The date in 64 bit POSIX format

18 Int32 - Must be 0

19 Int32 Id A table ID given by the user

20-35 String Description A description string given by the user

36 UInt32 RowSize The number of words in a row

37-39 Int32 - Must be 0

40
41
42
43

UInt32
Int32
Float32
Float32

Dim1.Size
-
Dim1.StartValue
Dim1.Distance

The size of the table in the first dimension
Must be zero
The position of the first data point of this dimension
The distance between data points in this dimension

44
45
46
47

UInt32
Int32
Float32
Float32

Dim2.Size
-
Dim2.StartValue
Dim2.Distance

The size of the table in the first dimension
Must be zero
The position of the first data point of this dimension
The distance between data points in this dimension

48
49

UInt32
Int32

Dim3.Size
-

The size of the table in the first dimension
Must be zero

1 With firmware version < 4.2 max number of entries is ~500’000 float values.

AN125_Tables_EP001 2025-02-12 2 /8

https://triamec.com/

50
51

Float32
Float32

Dim3.StartValue
Dim3.Distance

The position of the first data point of this dimension
The distance between data points in this dimension

52-63 Integer32 - Must be 0

2.2 Data
Because the (numerical) data is a flat sequence of binary LittleEndian 32bit entries (64bit possible by
occupying two 32bit entries), the data structure of the table is quite flexible. Because of this flexibility,
several parameters from the header are used for a correct interpretation of the data.

 Each Dimensions StartValue and Distance are used to translate from the scalar input to the correct
lookup index in this dimension. In many table applications, e.g. the firmware-based axis compensa-
tion, interpolation is used between the indices.

Hint:Hint: The lookup strategy described above minimize the storage space needed by only saving the
lookup values itself but requires these values to be equidistant in each dimension used.

 The RowSize specifies how many 32bit words are used for the lookup in the flat data sequence for a
given set of dimension input values.

Hint:Hint: Make sure your RowSize is even when you want to interpret (part of) the data as double.
This is necessary because Double requires two 32bit entries of the table. This means that
Double[i] accesses the same 32bit words as Integer[2*i] and Integer[2*i+1] or Float[2*i]
and Float[2*i+1]

For a standard one dimensional table of Float values, set:

 Header.RowSize = 1
 Header.Dim1.Size = number of Float values in the table
 Header.Dim2.Size = 1
 Header.Dim3.Size = 1

For a standard one dimensional table of Double values set:

 Header.RowSize = 2
 Header.Dim1.Size = number of Double values in the table
 Header.Dim2.Size = 1
 Header.Dim3.Size = 1

For a three dimensional table of Float values set:

 Header.RowSize = 1
 Header.Dim1.Size = number of entries in the first dimension
 Header.Dim2.Size = number of entries in the second dimension
 Header.Dim3.Size = number of entries in the third dimension

2.3 Checksum Calculation
A checksum may be attached to the header. This checksum is tested in the drive if ChecksumMode is set
to Check. If a file is transmitted to the drive with ChecksumMode = Calculate, the drive will change the

AN125_Tables_EP001 2025-02-12 3 /8

https://triamec.com/

ChecksumMode to Check and then calculate the checksum itself. This is useful if the user does not want
to calculate the checksum himself. By reading back this file, he gets a file with a checksum value, and
the ChecksumMode = Check.

The checksum is calculated with the SHA-3-384 method. Before calculation, zero the checksum in the
header, add NIST-type of padding, then calculate the SHA3-384 hash of the file. Finally write it back into
the header.

When using the TAM API implementation, the checksum handling is done automatically also on the PC,
see 3.4.

3 Accessibility and Interfaces.

3.1 Browser
The most straightforward way to handle tables on a drive is to access the drive’s web interface with a
browser. The interface allows you to get tables from the drive to your PC and vice versa. For more de-
tails, refer to AN124.

3.2 TAM System Explorer
Reading table values is done using Application.Tables.General.Data

• Source select the table to be accessed
• Index select the index of the table array
• Integer shows the 32bit integer value of the table at the index chosen
• Float shows the 32bit float value of the table at the index chosen
• Double shows the double value of the table at the index chosen

To access the header or commands for table Small1 for example, use register Application.Tables.Small1.
This contains the following elements. Contrary to the data of a table, its header can be manipulated
and committed via the System Explorer.

Hint:Hint: Due to internal limitations, only the first 1000 entries can be read out in the TAM System
Explorer.

Command

The command register allows to run one of the following table commands.

Command Description

Commit This command is described in detail below.

Reload Reload a persistent table from the persistent memory.

Erase Erase the persistent memory of this table and set values to default.

Committing a table calculates the size of the table from the header parameters (see chapter Structure
below). After this the table and its header can be read from the file system. If the file is persistent (see

AN125_Tables_EP001 2025-02-12 4 /8

https://www.triamec.com/en/documents.html
https://triamec.com/

chapter 2.1) the header and data are saved to the persistent memory.

Warning:Warning: Committing a persistent table can wear out the persistent memory. If a certain limit has
been reached, committing a table is denied with an error message and the user must
wait some time before trying again.

Changing the table header without committing does not change the size of the table as visible from the
file system nor the header seen from the file system nor change persistent memory. Repeat commit af-
ter changing the header and the new header will be visible from the file system and in persistent mem-
ory.

Changing the table data after committing the table changes the temporary memory (RAM) and will be
immediately visible over the file system but does not update persistent memory (FLASH).

Header

The table header is described in detail in chapter 2.1.

State

This shows the current state of the table. 3 means the table is ready.

3.3 Tama Code
From Tama a table is accessed the same as using the TAM System Explorer with two exceptions:

First: The data of the table can be accessed directly. It is important to note that the data is not saved as
float, integer or double but can be interpreted in all these types. To set/get a specific float value at in-
dex 10000 of table Small1, for example, simply use the code:

Register.Application.Tables.Small1.Data.Float[10000] = 1.234f;

float myFloat = Register.Application.Tables.Small1.Data.Float[10000];

Note:Note: Data.Float[100] and Data.Integer[100] and Data.Double[50] point to the same table item,
as described in 2.2

Second: Unlike in the TAM System Explorer, all data of a table can be read in Tama.

Write Table

Generate the values of the table by something like the following code example, which sets the table to
a value, that depends on the function customerFunction(pos1, pos2, pos3) at the three dimensional po-
sition (pos1, pos2, pos3) for two float and one double value per three dimensional position

int size1 = Register.Application.Tables.Small1.Header.Dim1.Size;

int size2 = Register.Application.Tables.Small1.Header.Dim2.Size;

int size3 = Register.Application.Tables.Small1.Header.Dim3.Size;

int rowSize = Register.Application.Tables.Small1.Header.RowSize; // 4 in this example

for (int k = 0; k < size3; k++) { // loop over the third dimension

for (int j = 0; j < size2; j++) { // loop over the second dimension

for (int i = 0; i < size1; i++) { // loop over the first dimension

int indexFor32bitValues = (i + size1 * (j + size2 * k)) * rowSize;

AN125_Tables_EP001 2025-02-12 5 /8

https://triamec.com/

float pos1 = Register.Application.Tables.Small1.Header.Dim1.StartValue +
Register.Application.Tables.Small1.Header.Dim1.Distance * (float)i;

float pos2 = Register.Application.Tables.Small1.Header.Dim2.StartValue +
Register.Application.Tables.Small1.Header.Dim2.Distance * (float)j;

float pos3 = Register.Application.Tables.Small1.Header.Dim3.StartValue +
Register.Application.Tables.Small1.Header.Dim3.Distance * (float)k;

Register.Application.Tables.Small1.Data.Float[indexFor32bitValues] =
customerFunctionFirstValue(pos1, pos2, pos3);

Register.Application.Tables.Small1.Data.Float[indexFor32bitValues + 1] =
customerFunctionSecondValue(pos1, pos2, pos3);

Register.Application.Tables.Small1.Data.Double[(indexFor32bitValues + 2) / 2] =
 customerFunctionSecondValue(pos1, pos2, pos3); // This will occupy word 3 and 4

}

}

}

To save the table persistently it is important to assign the correct values to the dimension and row sizes
to allow the firmware to calculate the correct memory space for the table. The size is calculated as:

size = 4 * (64 + Header.RowSize * Header.Dim1.Size * Header.Dim2.Size * Header.Dim3.Size)

Call the following code once. Don’t call it frequently to prevent flash wear!

Register.Application.Tables.Small1.Header.Dim1.Size = size1;
Register.Application.Tables.Small1.Header.Dim2.Size = size2;
Register.Application.Tables.Small1.Header.Dim3.Size = size3;
Register.Application.Tables.Small1.Header.RowSize = rowSize;
Register.Application.Tables.Small1.Header.Persistent = true;
Register.Application.Tables.Small1.Command = TableCommand.Commit;

Read Table

Below is an example on how to read a 1D table saved on the drive under Small1. The input signal used
for the lookup is Axes[0]/Signals/PathPlanner/PositionFloat. The lookup value is linearly interpolated. This
template could serve as a prototype for a 1D axis compensation. We would never the less recommend
to use the built-in axis compensation features and tools shown in AN140 unless you need specific fea-
tures that are currently not implemented (e.g. higher order interpolation).

float posAbs = Register.Axes_0.Signals.PathPlanner.PositionFloat;

float startValue = Register.Application.Tables.Small1.Header.Dim1.StartValue;

float distance = Register.Application.Tables.Small1.Header.Dim1.Distance;

float posRel = posAbs – startValue;

float idxFloat = posRel / distance;

index = (int)Math.Floor(idxFloat);

offset = idxFloat – index;

float c0 = Register.Application.Tables.Small1.Data.Float[idx];

float c1 = Register.Application.Tables.Small1.Data.Float[idx + 1];

float lookupValue = c0 + offset * (c1 - c0);

3.4 TAM API
Tables can be send to and get from the drive by software either via the TAM API or by directly using
HTTP GET and PUT to the respective URI. Please note that after a successful transfer of a table to the
drive, additional time is necessary to validate and potentially persist the table as described in 3.2. You
can check the state of this processing via the State register of the table.

AN125_Tables_EP001 2025-02-12 6 /8

https://www.triamec.com/en/documents.html
https://triamec.com/

Note:Note: The TAM API interface explained in this AN is for general tables that are not related to a
firmware feature. For tables associated with a firmware feature (e.g. axis compensation),
use the specific API for this feature.

The API components for the creation and handling of tables are associated with the Triamec.Tam
namespace.

TamTbl

The TamTbl is the object representation of a table. A TamTbl cannot be instantiated directly via the
constructor but with TamTblFactory.Create(…). Other ways of creating a TamTbl object are trans-
ferring an existing table from a drive to the PC by using TamTbl.GetFromDrive(…) or loading an ex-
isting table from a .TAMtbl file with TamTbl.Deserialize(…). These methods internally also use
TamTblFactory.Create(…)for checksum handling, see below.
The TamTbl can then be used in your code, saved to a file with TamTbl.Serialize(…) or transferred
to a drive with TamTbl.SendToDrive(...)

TamTblFactory

The TamTblFactory is responsible for the creation of TamTbl objects. The checksum is handled the
same way as in the firmware. On one hand, it is checked when a table is deserialized, which occurs
when reading a table from a file or a transferring a table from a drive to the PC, in order to be sure that
the table is not corrupted. On the other hand, the checksum is calculated and added to a table when
serializing, which is necessary to save the table as a file or when transferring the table from a PC to a
drive. The checksum is then checked when (re)loading the file with the API or by the firmware of the
drive respectively.

If a table has been generated with another tool, it is possible to encounter tables with ChecksumMode
= Ignore. This is generally not recommended to do, as corrupted tables cannot be recognized as such
easily. The API will then also ignore the checksum.

3.5 Low Level Software Interface
External software can access the filesystem using the IP-address shown in chapter 3.1. This is especially
useful if the PC is connected with the drive over its auxiliary Ethernet port. For further information on
how to read and write files with this interface, consider AN12 4 .

AN125_Tables_EP001 2025-02-12 7 /8

https://www.triamec.com/en/documents.html
https://triamec.com/

Revision History

Version Date Editor Comment

001 2025-02-12 ns Initial release

AN125_Tables_EP001 2025-02-12 8 /8

Copyright © 2025
Triamec Motion AG
All rights reserved.

Triamec Motion AG
Lindenstrasse 16
6340 Baar / Switzerland

Phone +41 41 747 4040
Email info@triamec.com
Web www.triamec.com

Disclaimer
This document contains proprietary information belonging to Triamec Motion AG and must not be dis-
tributed.

This document is delivered subject to the following conditions and restrictions:

 This document contains proprietary information belonging to Triamec Motion AG. Such information
is supplied solely for the purpose of assisting users of Triamec products.

 The text and graphics included in this manual are for the purpose of illustration and reference only.
The specifications on which they are based are subject to change without notice.

 Information in this document is subject to change without notice.

http://www.triamec.com/
mailto:info@triamec.com
https://triamec.com/

	Table of Contents
	1 Overview
	2 Structure
	2.1 Header
	2.2 Data
	2.3 Checksum Calculation

	3 Accessibility and Interfaces.
	3.1 Browser
	3.2 TAM System Explorer
	Command
	Header
	State

	3.3 Tama Code
	Write Table
	Read Table

	3.4 TAM API
	TamTbl
	TamTblFactory

	3.5 Low Level Software Interface

	Revision History

