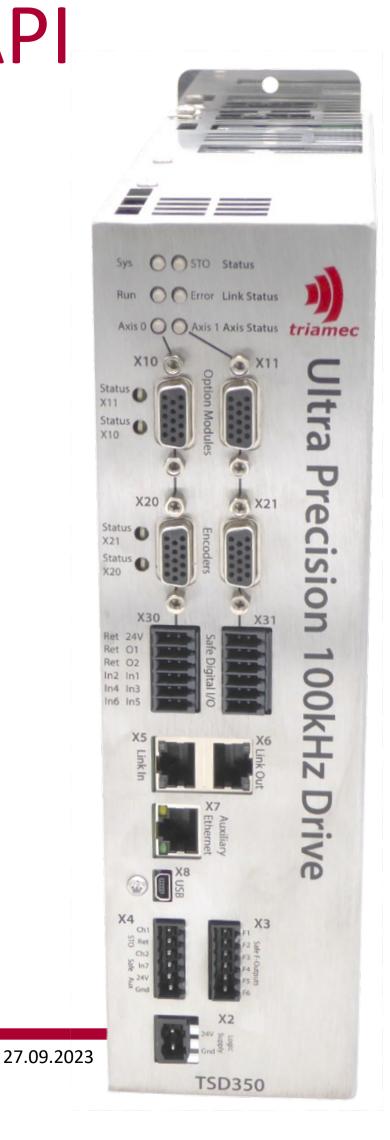
Controlling Triamec Drives through TAM API

Initial Training

Control an axis

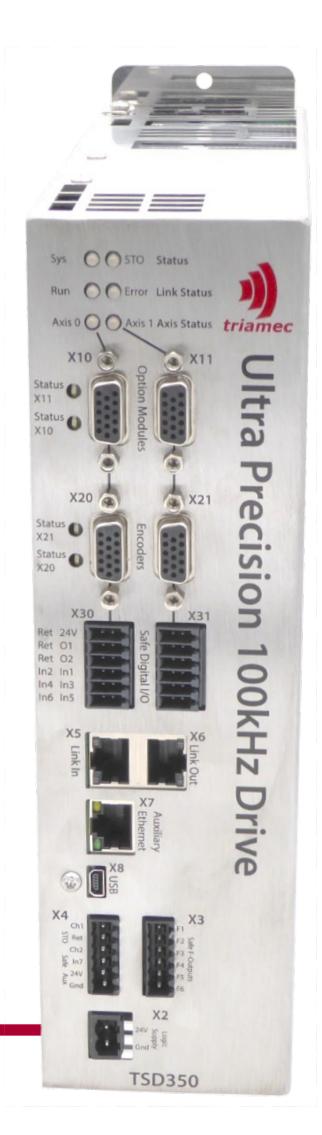

- Development Environment
- Basic functions of the TAM API

Background

- Topology, registers, configuration and simulation
- Commissioning tool: TAM System Explorer

Advanced tasks

- Move sequence
- Measurement

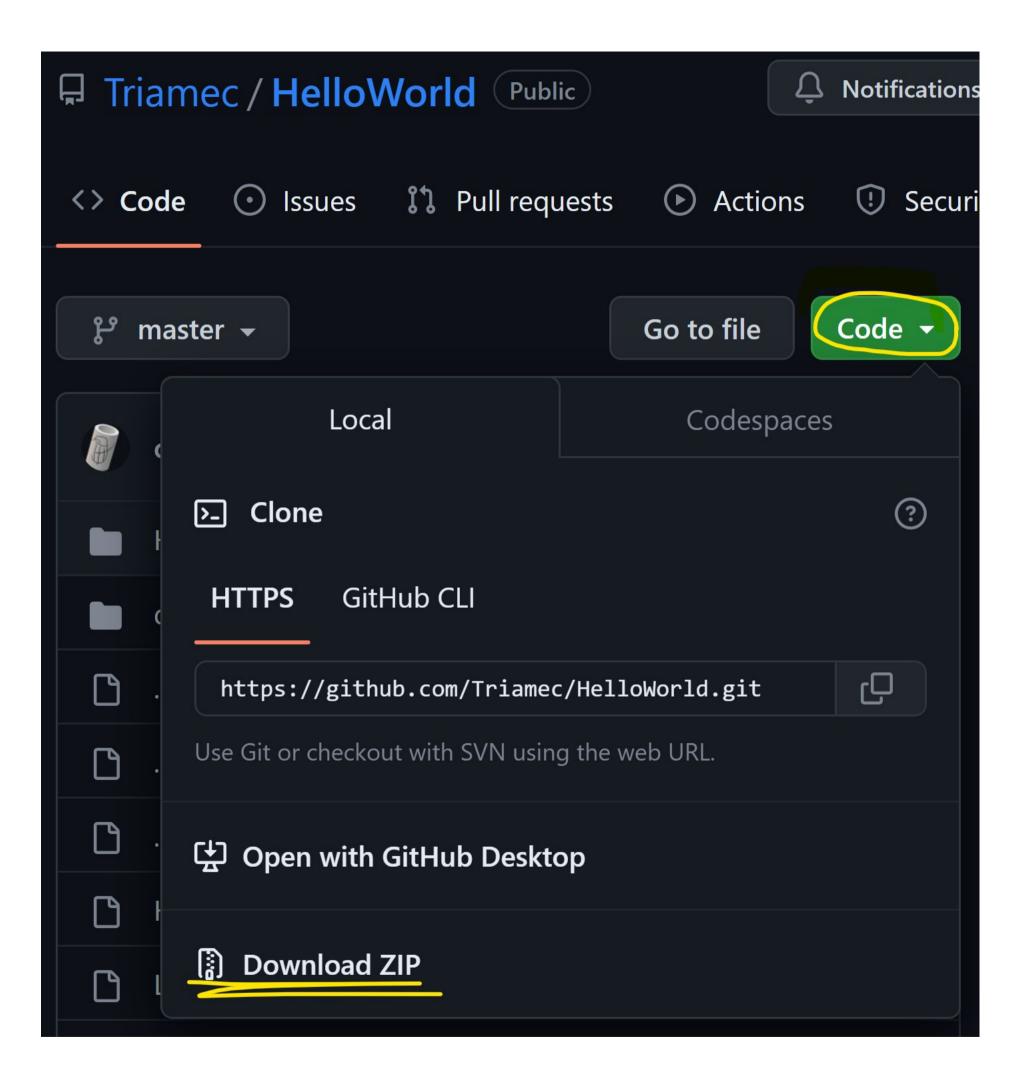


Controlling Triamec Drives through TAM API

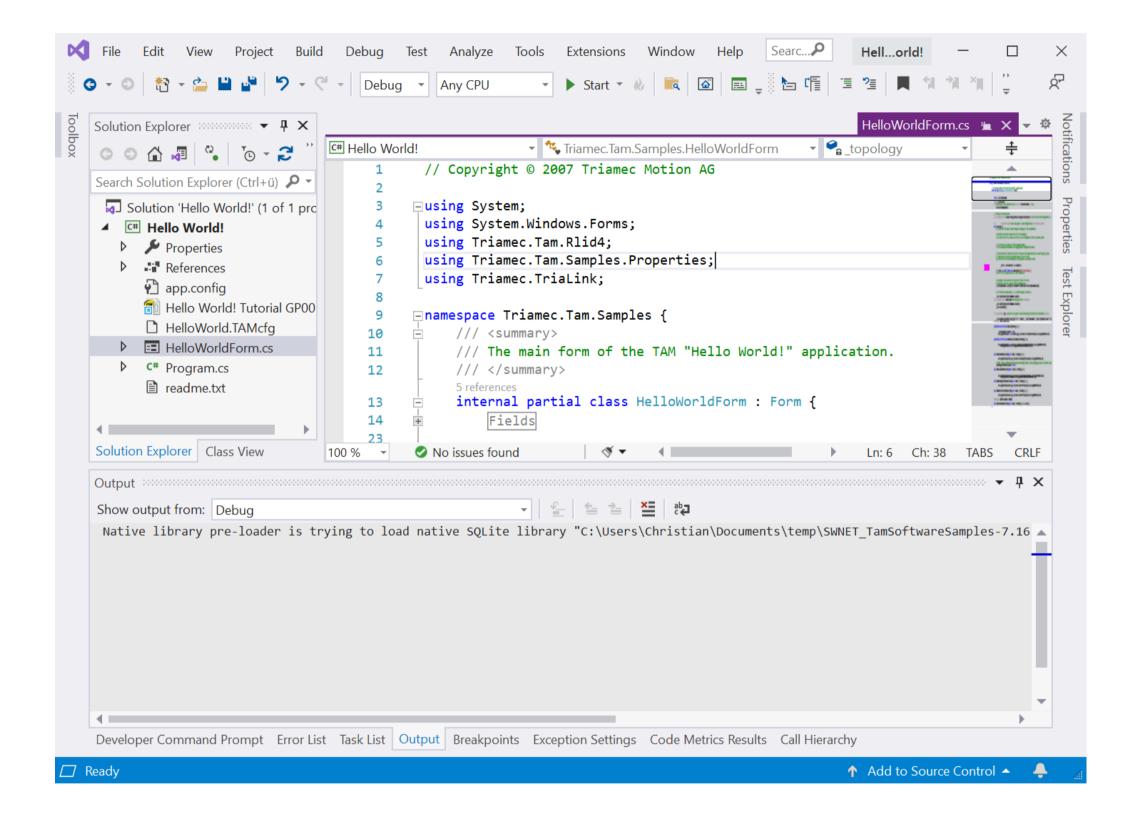
Initial Training – Part I

Control an axis

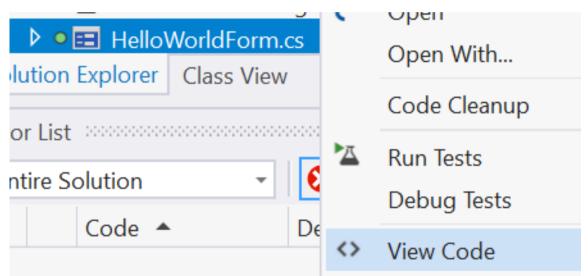
- Development Environment
- Basic functions of the TAM API
- Background
 - Topology, registers, configuration and simulation
 - Commissioning tool: TAM System Explorer
- Advanced tasks
 - Move sequence
 - Measurement

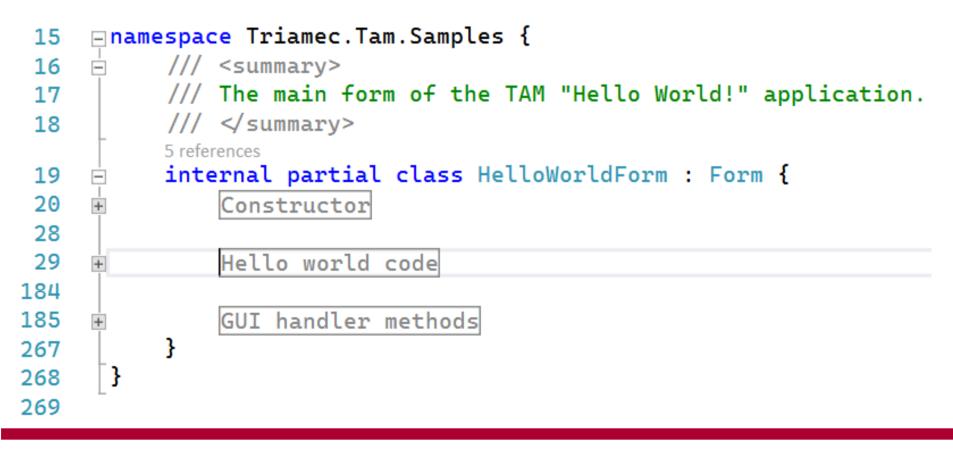


- Microsoft Windows 10 64-bit recommended or Windows 11
- One of those:
 - Visual Studio 2017 Express free
 - Install the .NET Framework 4.8 Developer pack
 - Visual Studio 2019 or 2022 free for open source projects and small organizations
 - Select the .NET desktop development workload
 - Add the optional .NET Framework 4.8 development tools
- Install the TAM Software



- Browse to https://github.com/Triamec/HelloWorld
- Get the sample, for example as ZIP
 - Extract . zip to your documents


- Open solution file Hello World!\Hello World!.sln
- Build the solution (Menu Build > Build Solution)



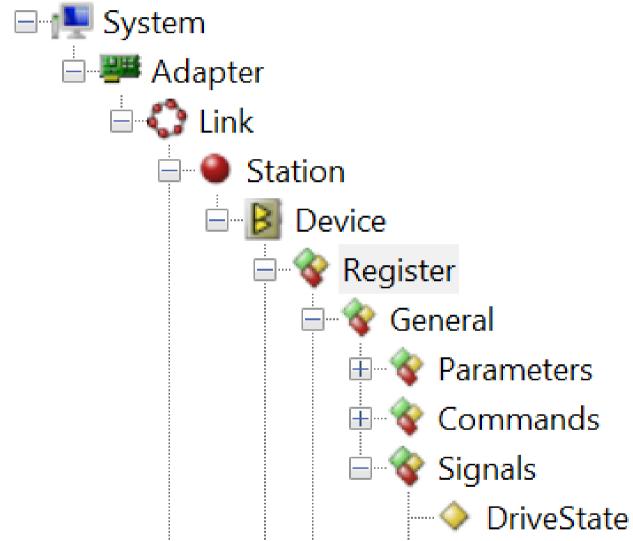
Simulate the Drive

- Study HelloWorldForm.cs in Text Editor
 - Open using right click

• Expand the Hello world code region

Triamec Motion AG

► Start the app with <u>F5</u>


- A simulation of a drive is used
- Set breakpoints to step through the code

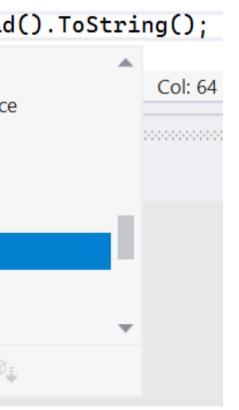
TAM Hello World!	- 🗆 >			
File				
Drive				
Enable	Disable			
Move				
Left	Right			
Velocity				
10%	100%			
Measurement				
	1.57 rad			

Access Drive

- Create the root object of the structure
- _topology = new TamTopology("Tutorial"); 82
- Add local system to the structure system = _topology.AddLocalSystem(); 95
 - Add connected drives to the structure
- system.Identify(); 99
- Locate axis in the structure (various strategies possible) _axis = system.AsDepthFirstLeaves<TamAxis>() 109 .FirstOrDefault(a \Rightarrow a.Name == AxisName); 110

Read State

Access the drive's parametrization and state


// Get the register layout of the axis // and cast it to the RLID-specific register layout. var register = (Axis)_axis.Register;

// Read and cache the original velocity maximum value, // which was applied from the configuration file. _velocityMaximum = register.Parameters.PathPlanner.VelocityMaximum.Read();

Let code completion assist you

_unit :	= register.Paramet	ers.PositionController.	Pos	i <mark>tionUnit</mark> .Read
No issues found	∛ ▼ 		ا مکر ا مکر	IsRecord MasterPositionSource Name Nodes
			s (Offset
Registers.TamRegister <	float> Rlid19.PositionContr	rollerParameter.OutputLimit { get; }	مکر (OutputLimit
Limitation of the positi	on controller output [A].		۶.	Parent
			ا لکر	ParentNode
			Æ	<i>₹</i> <mark>\$</mark> ⊗ ♥,

Enable Controller

154	/// <exception cref="TamExcepti</td><td>on">Enabling fa</exception>	
155	void EnableAxis() \Rightarrow _axis.Cont	rol(AxisControl
156		
157	<pre>/// <exception cref="TamExcept:</pre></td><td>Requests.TamRed</td></tr><tr><td>158</td><td>void DisableAxis() <math>\Rightarrow</math> _axis.Co</td><td>(AxisControlCom</td></tr><tr><td>159</td><td></td><td>Issues an axis contro</td></tr><tr><td>160</td><td><pre> /// <summary></pre></td><td>disable the axis and</td></tr><tr><td>161</td><td>/// Moves in the specified dire</td><td>This method returns</td></tr><tr><td>162</td><td>/// </summary></td><td>acknowledgment wa</td></tr><tr><td>163</td><td><pre>/// <param name=" sign"="">A posit:</exception></pre>	AxisControlCommar
164	<pre>/// </pre>	

Take notice of inline documentation (shown when hovering or typing)

ailed.</exception> lCommands.ResetErrorAndEnable);

equest TamAxis.Control mmands axisControlCommands) rol command in order to enable/ d/or to recover from errors.

is immediately after an as received from the drive.

nds.Enable is not allowed when ate AxisState.Disabled or AxisControlCommands.Disable n the axis is in a state greater dstill.

racking instance allowing to wait amRequest.Termination of the change.

rection

hd.

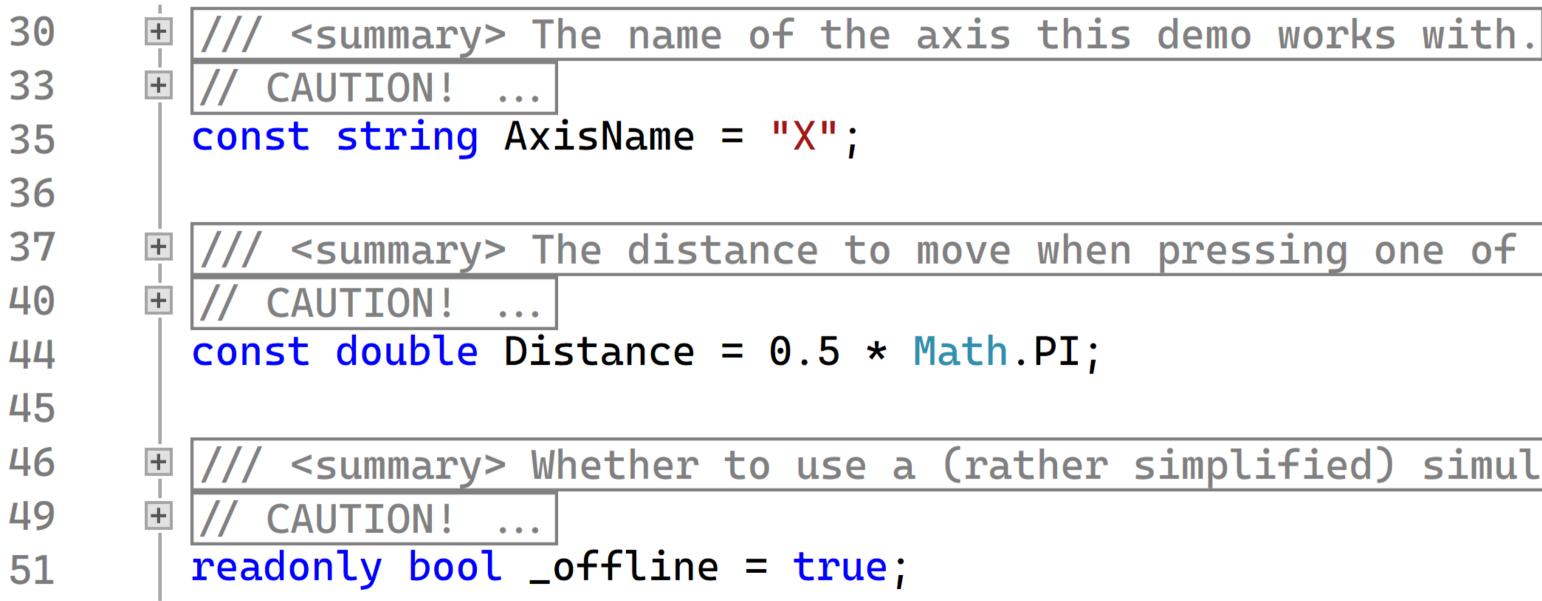
_veloc

Command Movement

- Operate on the TamAxis object
- _axis.MoveRelative(Math.Sign(sign) * Distance, _velocityMaximum * _velocityTrackBar.Value * 0.01f); 173
 - Often used methods:
 - -MoveAbsolute
 - -MoveVelocity
 - -Stop
 - -SetPosition

- Move to position
- Move with constant velocity
- Return to stand still
- Apply an offset to the position axis

Run the App


- Check whether
 - the controller can be enabled
 - the position changes
 - when moving
 - at a lower rate at 10% velocity
 - a move can be reprogrammed with a new move

TAM Hello World!	- 🗆 X			
File				
Drive				
Enable	Disable			
Move				
Left	Right			
Velocity				
10%	100%			
Measurement				
Position	1.57 rad			

Customize the App

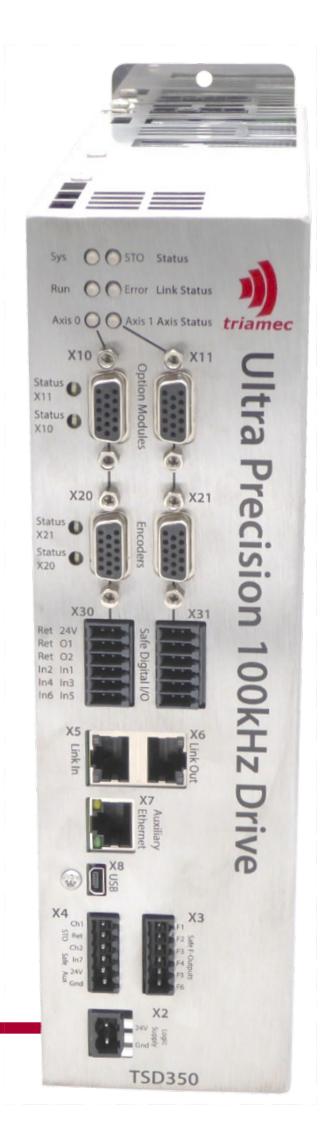
Modify the constants to adapt to your hardware

<summary> The distance to move when pressing one of the move buttons.

<summary> Whether to use a (rather simplified) simulation of the axis.

Achievements

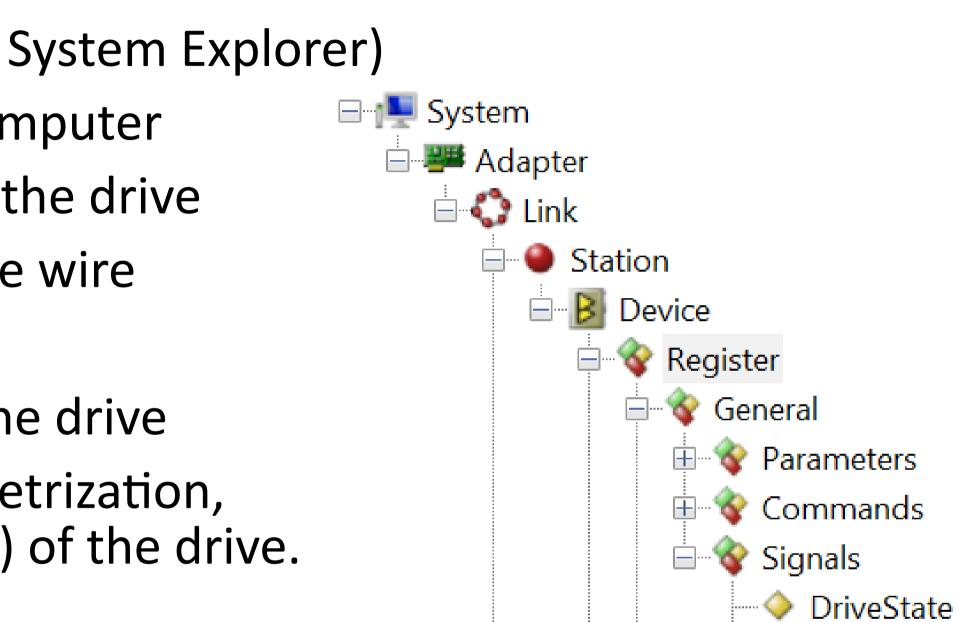
- Set up development environment
- Working code at disposal
- Control an already configured axis
- Examine the state of axis and drive
- Employ inline help to examine the API surface


Controlling Triamec Drives through TAM API

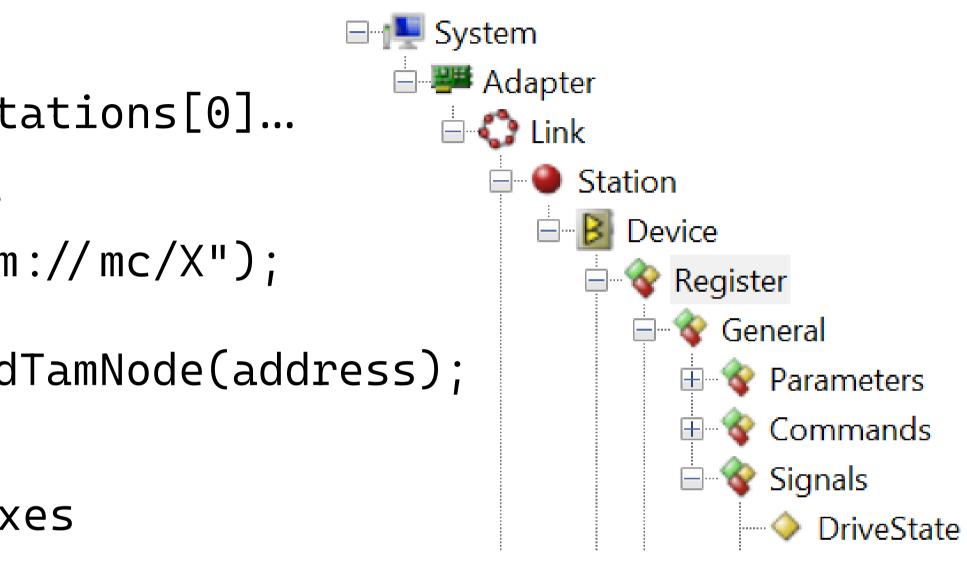
Initial Training – Part II

- Control an axis
 - Development Environment
 - Basic functions of the TAM API

Background

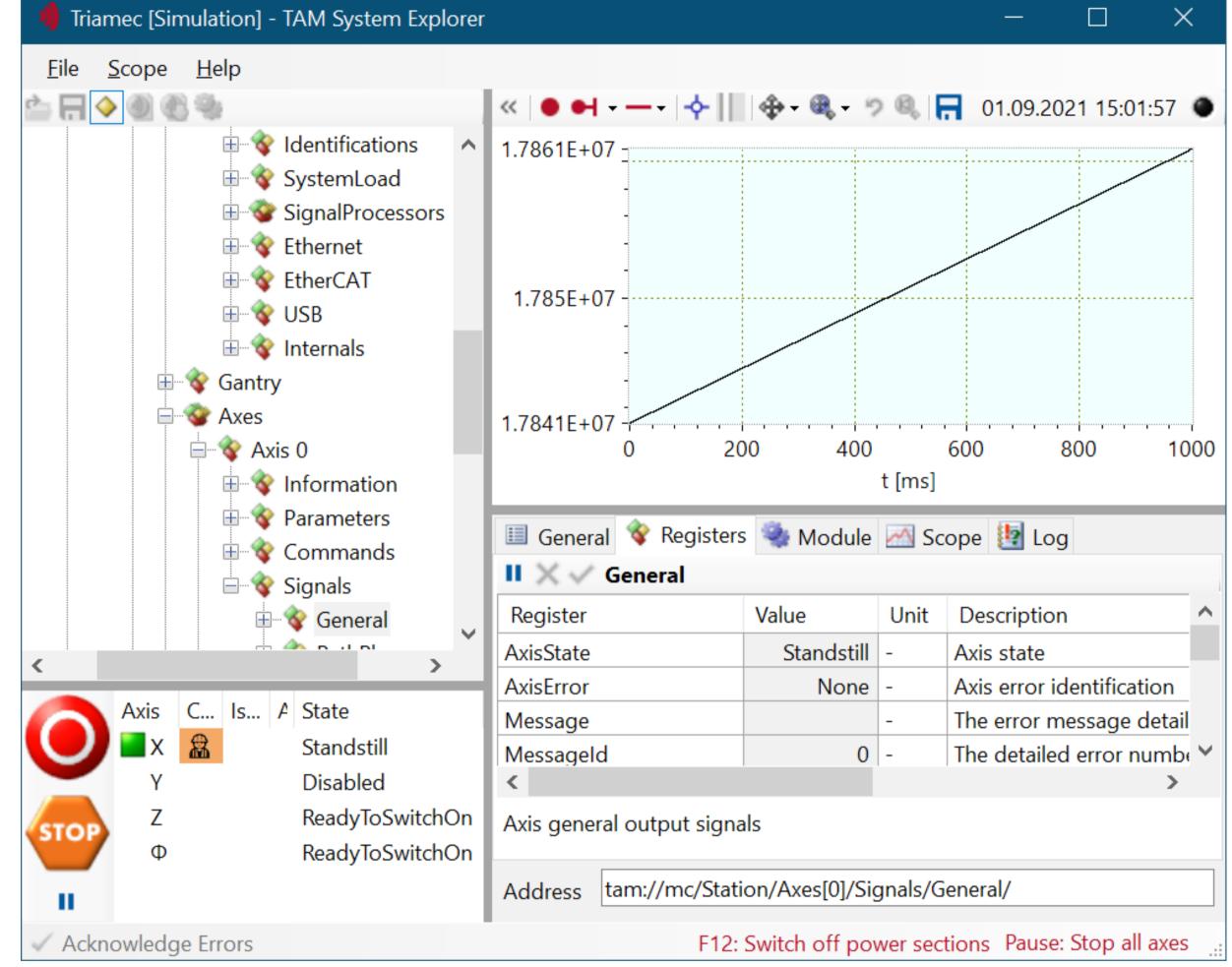

- Topology, registers, configuration and offline mode
- Commissioning tool: TAM System Explorer
- Advanced tasks
 - Move sequence
 - Measurement

Communication Topology


- Topology Top of hierarchy (not shown in TAM System Explorer)
- System Represents the local or a remote computer
- Adapter Computer hardware used to access the drive
- Link Communication layer, represents the wire
- Station Addressable party within the link
- Device Represents the microprocessor of the drive
- Register Structured representation of parametrization, commands and visible state (signals) of the drive.

Navigate the Structure

- Top-down
 - Names System.Adapters[0].Link.Stations[0]...
 - Generic System.Nodes[0].Nodes[0]...
 - Search var address = new Uri("tam://mc/X");
 station =
 (TamStation)system.FindTamNode(address);
 - Cast ITamDevice to ITamDrive
 - Access TamAxis instances with ITamDrive.Axes
- Bottom-up
 - Step by step device.Station.Link.Adapter.System
 - Generic device.ParentNode.ParentNode...
 - Go to root device.NavigateToRoot()


er.System ode...

Commissioning

Use the TAM System Explorer to

- commission the axis
- tune the controller
- manage configuration
- diagnose and measure
- run side-by-side with app:
 - Tria-Link and USB: exclusive!
 - Ethernet: possible
- Homepage
- Servo Drive Setup Guide

- Manage dependencies with NuGets
 - Menu Project > Manage NuGet Packages...
 - Application runs independently from any installed TAM Software, apart from drivers.
 - Update to a newer version of the TAM Software with ease.
- When to use which NuGets:
 - *Triamec.Tam.TriaLink*: Applications
 - *Triamec.Tools.TamaCompiler* Projects with Tama programs
 - *Triamec.Tam.UI* Integrate TAM System Explorer
 - *Triamec.Tam.Simulation* NuGet not needed in production.

luGet: Hello World! → 🗙		→ ‡
Browse Installed Updates	NuGet Package Manager: He	ello World!
Search (Ctrl+L)	e Package sourc	e: All - 🌣
Triamec.Tam.Simulation 7.1.8	🞲 Triamec.Tam.TriaLir	nk
Triamec Automation and Moti	Installed: 7.14.6	Uninstall
Triamec.Tam.TriaLink by 7.14.6	Version: 7.14.6	Update
Triamec Advanced Motion Tri	• Options	
	Description	
	Triamec Advanced Motion Tria-Link lil	braries.
	Version: 7.14.6	
	Owner(s): Triamec Motion AG	5
	Author(s): Triamec Motion AG	3
	License: MIT	-

TAM API

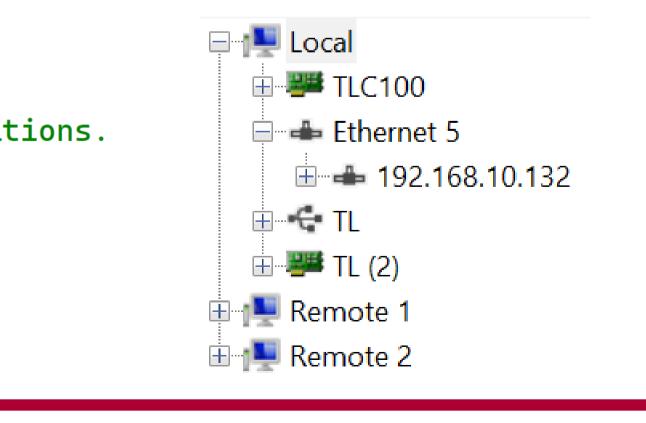
- Homepage
- Access offline help via TAM System Explorer
 - Browse to *Software* folder
 - Developer Manual
 - TAM API Reference
 - SWNET_ReleaseTable-7.16.0_EP018.pdf
 - SWNET_TamApiDeveloperManual_EP038.pdf
 - SWNET_TamApiReference-7.16.0_EP001.chm
 - SWNET_TamApiReleaseNotes-7.16.0_EP001.pdf
 - SWNET_TamSystemExplorerReleaseNotes-7.16.0_EP001.pdf
 - SWNET_Troubleshooter_EP017.pdf

🌖 Triamec - TA	M System Explorer
File Scope	Help
Identifyin	Documentation
lacing	Developer Samples Open document directory

Set Up Communication

Force specific communication channel

// Access the drive via Auxiliary Ethernet. Consult application note AN123 for correct setup. In particular, // make sure to take into account the firewall. If you can connect to the drive but not acquire data, this // is likely due to the firewall. //var access = DataLinkLayers.Network;

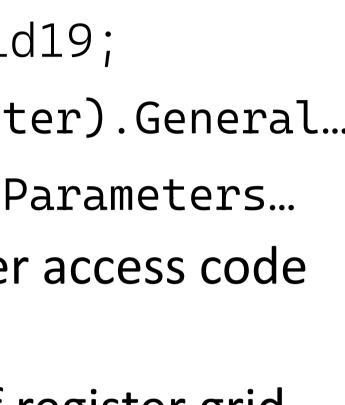

// Access the drive via PCI card (not recommended when TwinCAT runs on the same system)
//var access = DataLinkLayers.TriaLink;

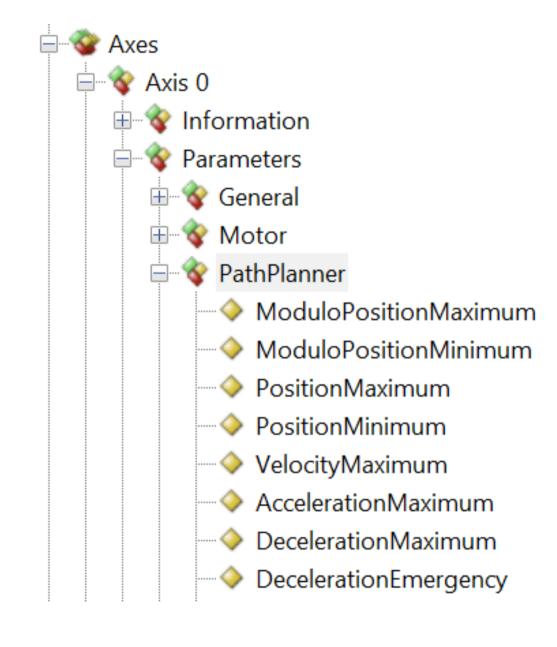
// Connect the drive with a USB cable to the PC (not recommended with harsh electromagnetic environments)
// Also works with a Tria-Link PCI adapter connected via USB to the measuring PC.
var access = DataLinkLayers.TriaLinkUsb;

var system = _topology.AddLocalSystem(access);

// Scan the Tria-Link in order to learn about connected stations.
system.Identify();

• Specifying the channel speeds up start-up.

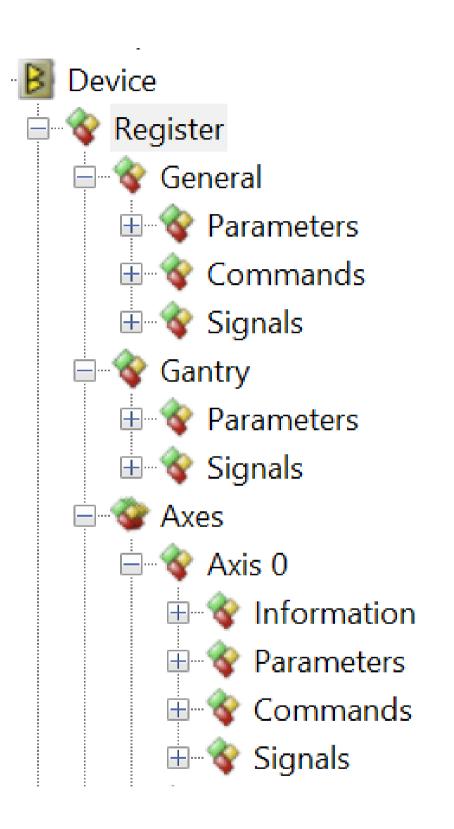




Navigate to Registers

- Import Namespace using Triamec.Tam.Rlid19;
- Start at Drive ((Register)drive.Register).General...
- Start at Axis ((Axis)axis.Register).Parameters...
- Use TAM System Explorer when writing register access code
 - Visualize the structure
 - Copy & Paste from Address bar at bottom of register grid

💷 General 💸 Registers	🖏 Module	🖂 So	ope ! Log	
🛚 🗙 🗸 Message				
Register	Value	Unit	t Description	
AxisState	Startup	-	Axis state	
AxisError	None	-	Axis error identification	
Message		-	The error message detail	\checkmark
<				>
The error message detail				
Address tam://mc/DualLoop 1/Axes[1]/Signals/General/Message/				



Register Classes

- Parameters Configure the drive for the intended application
- Commands Change state, for example to set a digital output
- Signals Observe public state in real-time
- Information Document properties of an axis. Not affecting behavior of the drive in any way

Operate on Leaf Registers

- Get value int value = register1.Read();
- Set value register2.Write(32f);
- Apply parameters after having written a set of them. parameterRegister1.Write(x); parameterRegister2.Write(y); parameterRegister3.Write(z); parameterRegister1.Commit();
 - One Commit call on any of these parameters suffices
 - Ensures atomic change
 - Commit returns as soon as the drive has applied parametrization
 - Registers apart from parameters don't need to be committed

🐨 Axes 😵 Axis 0 😵 Information 😵 Parameters 😵 General 😵 Motor PathPlanner ModuloPositionMaximum ModuloPositionMinimum PositionMaximum PositionMinimum VelocityMaximum AccelerationMaximum DecelerationMaximum DecelerationEmergency

II X V PathPlanner

Register	Actual	Prepare	
ModuloPositionMaximum	0	0	ι
ModuloPositionMinimum	0	1	ι
PositionMaximum	0	20	ι

Configuration

- The TAM Configuration (.TAMcfg) is an XML text file containing the parametrization of all drives in a system.
- Applied to the system during commissioning and persisted on the drives It follows that for many scenarios, an app doesn't need to configure the drive. In a system with multiple drives, drives are matched by the
- General.Parameters.DeviceName parameter. Despite that name, the DeviceName is correlated with the TamStation's name!

Offline Environment

Examine a machine offline by means of its TAM Configuration (with TAM System Explorer)

- Number of drives, their type and other properties
- Parametrization
- Whole register interface
- Bode tuning
- Simplified path planner
- Data acquisition
- Not simulated: hardware, controllers, most signals
- Only use for early prototyping of your application while no hardware is available

1 Configuration (with TAM System Explorer) erties

nals ion while no hardware is available

Achievements

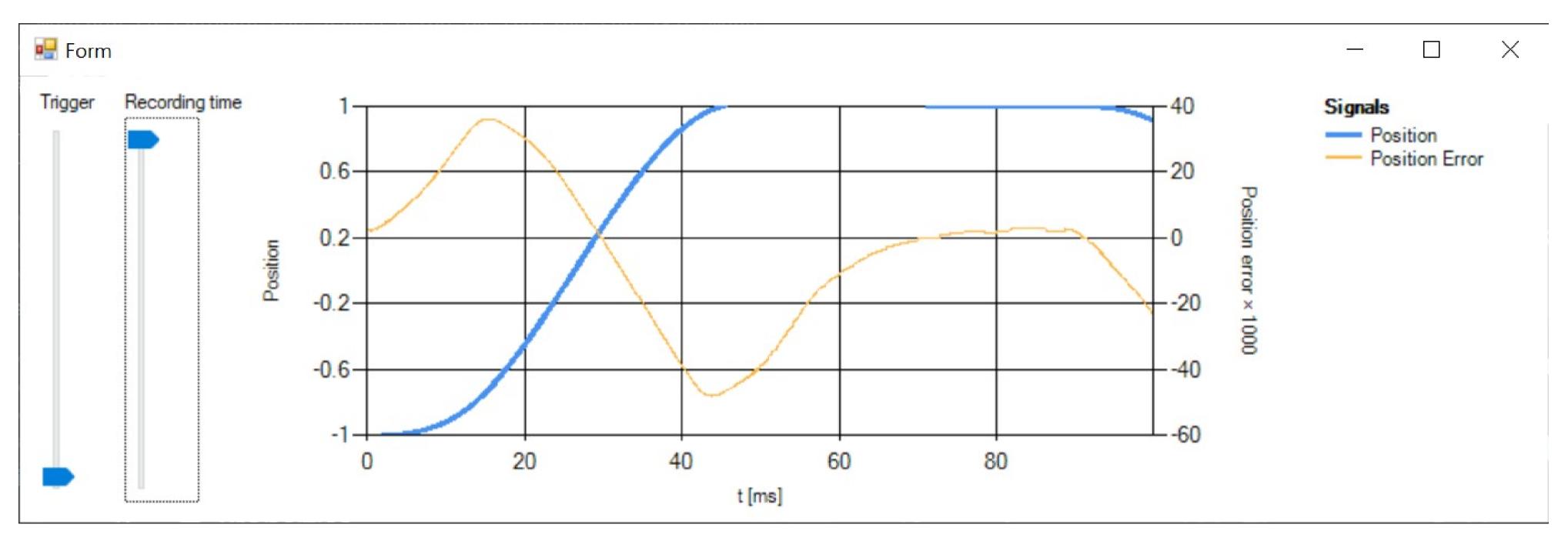
- Find help & documentation for TAM API and TAM System Explorer
- Quickly access the drive from your app
- Parametrize drive
- Gain some insight in the C# project setup
- Observe and change drive state
- Know when a TAM Configuration file is needed

Controlling Triamec Drives through TAM API

Initial Training – Part III

- Control an axis
 - Development Environment
 - Basic functions of the TAM API
- Background
 - Topology, registers, configuration and simulation
 - Commissioning tool: TAM System Explorer

Advanced tasks


- Move sequence
- Measurement

Acquisition Sample

Acquisition.sln demonstrates move sequence and measurement

• Example screenshots in this presentation are taken from this sample code

Move Sequences

- Programming a sequence requires waiting for the move to end.
- Some API calls return a TamRequest instance for this sake, for example
 - TamAxis.MoveAbsolute
 - TamAxis.Control
- Chain WaitForSuccess or WaitForSuccessAsync to the command as follows:

// Disable the axis controller. _axis.Control(AxisControlCommands.Disable).WaitForSuccess(Timeout);

// Switch the power section off. _axis.Drive.SwitchOff().WaitForSuccess(Timeout);

- Needs preparation: ITamDevice.AddStateObserver must be called at startup
- When calling WaitForSuccess on the result of TamAxis.MoveVelocity, another thread needs to reprogram the axis eventually, for example using TamAxis. Stop

TamRequest Features

- Wait... methods see above
- CurrentState: Pending | Executing | Terminated
- Termination: None | Completed | Superseded | ...
- Can fail due to
 - Timeout
 - The axis is in the wrong state
 - The axis was reprogrammed before the move ended
 - The firmware doesn't support the command
 - Programming error
- Observe using
 - Termination event
 - Transition event on ITamDevice and TamAxis instances

Acquire Real-Time data

- Import namespaces
- using Triamec.Acquisitions; 8
- using Triamec.Tam.Acquisitions; 9
 - Create an object to hold data from any register
- _positionErrorVariable = errorReg.CreateVariable(desiredSamplingTime: TimeSpan.Zero); 95 • Sampling time zero means fastest possible (100 kHz) • Often 10 kHz — TimeSpan.FromTicks(TimeSpan.TicksPerMillisecond / 10) — suffices
- - Acquire data

_positionErrorVariable.Acquire(TimeSpan.FromSeconds(1));

- Get data out of the buffer
- in foreach (double value in variable) { 135 points.AddXY(xStep * index++, value * scaling); 136

Synchronized Data and Continuous Measurement

- Create an acquisition object
- // As soon as multiple variables are to be recorded synchronized, create an acquisition obje // Otherwise, you may use the Acquire methods of the variable itself. _acquisition = TamAcquisition.Create(_positionVariable, _positionErrorVariable);
- Sample data repeatedly, contiguous and without delay
 - // Maximum expected duration between two calls to Acquire var timeLimit = TimeSpan.FromSeconds(5); _acquisition = TamAcquisition.Create(timeLimit, _positionErrorVariable); while (true) {
 - // Just consider what's in the buffer already _acquisition.Acquire(TimeSpan.Zero);
 - Process(_positionErrorVariable.ToArray());

Asynchronous Acquisition

Use asynchronous Task workflow

await _acquisition.AcquireAsync(duration, null); Fill(_chart.Series["Position"], _positionVariable, 1); Fill(_chart.Series["Position Error"], _positionErrorVariable, 1E3);

Cleaning Up

- What to do before the application ends
 - Ensure the axis is in a safe place.
 - Disable controller axis.Control(AxisControlCommands.Disable).WaitForSuccess(Timeout);
 - Remove any state observer drive.RemoveStateObserver(this);
 - Dispose the root object _topology.Dispose();

sable).WaitForSuccess(Timeout); StateObserver(this); spose();

Achievements

- Detect end of movement and other long-running tasks on the drive
- Obtain real-time data from the drive in the way that fits best in your application
- Leave system in a sane state

ng tasks on the drive y that fits best in your application

