
Triamec Drive File System

Application Note 124

A description of the file system of Triamec drives and how it is accessed. This allows reading and writing
large tables, i.e. for compensation data and accessing log files.
The file system is available in firmware 4.11 and newer and is accessible with a TAM System Explorer
version 7.15 or newer, or with a browser.

Table of Contents

1 File System...2
1.1 Directory..3
1.2 Transfer Files to Drive....................3

2 Tables...4
2.1 TAM System Explorer Access.........4
2.2 Tama Code Access.........................5
2.3 File Server Access..........................5
2.4 Structure.......................................6

2.5 Header...7
2.6 Checksum Calculation...................7

3 Software access.....................................8
3.1 Reading a file from the drive.........8
3.2 Writing a file to the drive...............9

References...11

Revision History.....................................11

Document AN124_Filesystem_EP
Version 010, 2024-08-09
Source Q:\Doc\ApplicationNotes\
Destination T:\doc\ApplicationNotes
Owner mvx www.triamec.com

https://www.triamec.com/
https://triamec.com/

1 File System
The entry point to the file system is the web server of the drive. For that, a valid connection to the drive
has to be set up (see [1]). Be aware that different connection types might not have the same perfor-
mance (round trip time, etc.).

The most intuitive way of accessing the file system is using the TAM System Explorer. Use the context
menu of the drive node as shown in Figure 1. Choose the menu item Browse and a browser window
will open as in Figure 2. This is the entry point of the drive web server and file system access (HTTP ac-
cess).

Figure 1: The context menu with the browse entry.

Figure 2: The browser window of the entry point.

This page contains two links, which are important for the file system: The directory and the transfer to
drive. These are explained in the next two chapters.

Hint:Hint: Please note that file system access over USB and PCI requires a running TAM System
Explorer. See (1) for technical details.

1 The IP address of the entry point depends on the connection type. If using USB or PCI, this address is generated by the
TAM System Explorer and this type of connection is only available as long as the Explorer runs. Over Ethernet, this IP ad-
dress is independent of the TAM System Explorer and is discussed in AN123.

AN124_Filesystem_EP010 2024-08-09 2 /11

https://triamec.com/

1.1 Directory
Open the directory using the link and the browser page
Figure 3 appears.

The left column shows all the files, the drive knows. The
second column shows the actual size in bytes. The third
column is the maximum allowed size of each file.

 If an entry is marked as a link, the file contains data
and may be loaded from the drive to the PC by click-
ing on its link.

 If the entry is plain text (without link), the file is
empty and the entry is used as an indication of the
maximum size of the file.

1.2 Transfer Files to Drive
Choose the transfer to the drive link in chapter 1
and the browser page Figure 4 opens.

 In the entry Filepath in drive enter a path and
file name as available in the directory (see Fig-
ure 3).

 In the entry Select from PC choose the file on
your PC that you want to transfer to the drive.

 Then choose Start to start transmitting.

Once the browser responses with upload of tables/small4.TAMtbl succeeded, the file has been saved
successfully to the drive ram and is accessible from Tama code.

Warning:Warning: If a file is a persistent file (see chapter 2), the internal saving to the permanent memory
is not finished at this time. This process starts immediately after the browser finished
transmitting and may take up to one second. You can work with the drive as usual and
upload other files, but you should not power down the drive during this phase.

AN124_Filesystem_EP010 2024-08-09 3 /11

Figure 4: The transfer-a-file page

Figure 3: The directory page of the file system.

https://triamec.com/

2 Tables
Tables can be used in a user real-time application (Tama), i.e. for cogging compensation. Currently we
support 8 small tables (~16'000 entries) and 2 large tables (~2’000'000 entries)2.

A table contains a header and data. These may be accessed from the TAM System Explorer (chapter 2.1)
or a user real time application in Tama (chapter 2.2) or from the file server (chapter 2.3).

The structure and size of a table (chapter 2.4) is specified with the header as discussed in chapter 2.5
and must be committed. This header also specifies, whether the table is persistent or temporary.

2.1 TAM System Explorer Access
Reading table values is done using Application.Tables.General.Data

• Source select the table to be accessed
• Index select the index of the table array
• Integer shows the 32bit integer value of the table at the index chosen
• Float shows the 32bit float value of the table at the index chosen
• Double shows the double value of the table at the index chosen

The value cannot be modified. Use Tama or the file system to set the values of the table.

Please note that Double requires two 32bit entries of the table. This means a double value at index i oc -
cupies float or integer entries at indices 2*i and 2*i+1.

To access the header or commands for table "Small1" for example, use register Application.Tables.Small1.
This contains the following elements.

Command

The command register allows to run one of the following table commands.

Command Description

Commit This command is described in detail below.

Reload Reload a persistent table from the persistent memory.

Erase Erase the persistent memory of this table and set values to default.

Committing a table calculates the size of the table from the header parameters (see chapter Structure
below). After this the table and its header can be read from the file system. If the file is persistent (see
chapter 2.5) the header and data are saved to the persistent memory.

Warning:Warning: Committing a persistent table can wear out the persistent memory. If a certain limit has
been reached, committing a table is denied with an error message and the user must
wait some time before trying again.

Changing the table header without committing does not change the size of the table as visible from the
file system nor the header seen from the file system nor change persistent memory. Repeat commit af-

2 With firmware version < 4.2 max number of entries is ~500’000 float values.

AN124_Filesystem_EP010 2024-08-09 4 /11

https://triamec.com/

ter changing the header and the new header will be visible from the file system and in persistent mem-
ory.

Changing the table data after committing the table changes the temporary memory (RAM) and will be
immediately visible over the file system but does not update persistent memory (FLASH).

Header

The table header is described in detail in chapter 2.5.

State

This shows the current state of the table. 3 means the table is ready.

2.2 Tama Code Access
From Tama a table is accessed the same as using the TAM System Explorer with two exceptions:

First: Each table contains a folder “data”, which contains arrays of float, integer and double, which can
directly be accessed with theirs indices. To set the float value of table Small1 at index 10000, for exam-
ple, simply use the code:

Register.Application.Tables.Small1.Data.Float[10000] = 1.234f;

Note:Note: Data.Float[100] and Data.Integer[100] and Data.Double[50] point to the same table item.

Second: To get the maximum size of a table use:

int len = Register.Application.Tables.Small1.Data.Float.Length;

To save the table persistently call the following code once. Don’t call it frequently to prevent flash wear!

Register.Application.Tables.Small1.Header.Dim1.Size = size;
Register.Application.Tables.Small1.Header.Dim2.Size = 1;
Register.Application.Tables.Small1.Header.Dim3.Size = 1;
Register.Application.Tables.Small1.Header.RowSize = 1;
Register.Application.Tables.Small1.Header.Persistent = true;
Register.Application.Tables.Small1.Command = TableCommand.Commit;

2.3 File Server Access
Tables are accessed as files using the file server as described in chapters 1.1 and 1.2.

The file starts with the table header and continues with the table data.

 The header occupies 64 words of 32bits each and is described in chapter 2.5.
 The table data consists of 32bit float or Integer entries or 64bit double entries.

The size of this file in bytes is calculated during Table Commit by

size = 4 * (64 + Header.RowSize * Header.Dim1.Size * Header.Dim2.Size * Header.Dim3.Size)

Note:Note: The table is a binary file with a flat sequence of binary LittleEndian 32bit or 64bit entries
without Tabulator or End-of-Line characters.

If a table is transmitted from the PC to the drive, an internal Commit of the table takes place to provide

AN124_Filesystem_EP010 2024-08-09 5 /11

https://triamec.com/

consistency with the internal register. If the table is marked persistent (see header below) the table will
then be saved to the persistent memory.

If a table is loaded from the drive to the PC, the table header is taken from the last committed version.
The data part of the file is always taken from the most recent data even if the table has not been com-
mitted since changing data.

2.4 Structure
The structure of the table is flexible. For a standard one dimensional table of Float values, set:

 Header.RowSize = 1
 Header.Dim1.Size = number of Float values in the table
 Header.Dim2.Size = 1
 Header.Dim3.Size = 1

For a standard one dimensional table of Double values set:

 Header.RowSize = 2
 Header.Dim1.Size = number of Double values in the table
 Header.Dim2.Size = 1
 Header.Dim3.Size = 1

For a three dimensional table of Float values set:

 Header.RowSize = 1
 Header.Dim1.Size = number of entries in the first dimension
 Header.Dim2.Size = number of loops in the second dimension
 Header.Dim3.Size = number of loops in the third dimension

Generate the values of the table by something like the following code example, which sets the table to
a value, that depends on the function customerFunction(pos1, pos2, pos3) at the three dimensional po-
sition (pos1, pos2, pos3):

int size1 = Register.Application.Tables.Small1.Header.Dim1.Size;

int size2 = Register.Application.Tables.Small1.Header.Dim2.Size;

int size3 = Register.Application.Tables.Small1.Header.Dim3.Size;

for (int k = 0; k < size3; k++) { // loop over the third dimension

for (int j = 0; j < size2; j++) { // loop over the second dimension

for (int i = 0; i < size1; i++) { // loop over the first dimension

int index = i + size1 * (j + size2 * k);

float pos1 = Register.Application.Tables.Small1.Header.Dim1.StartValue +
Register.Application.Tables.Small1.Header.Dim1.Distance * (float)i;

float pos2 = Register.Application.Tables.Small1.Header.Dim2.StartValue +
Register.Application.Tables.Small1.Header.Dim2.Distance * (float)j;

float pos3 = Register.Application.Tables.Small1.Header.Dim3.StartValue +
Register.Application.Tables.Small1.Header.Dim3.Distance * (float)k;

Register.Application.Tables.Small1.Data.Float[index] = customerFunction(pos1, pos2, pos3);

}

}

}

AN124_Filesystem_EP010 2024-08-09 6 /11

https://triamec.com/

2.5 Header
The header fields are shown in the following table.

Word
number

Type Register name Description

0 Bool Persistent 0=Table is Volatile, 1=Table is Persistent

1 Integer32 - Must be 0

2 Integer32 Type {0=User, 5=CoggingCompensationV1, 10=AxisCompensationV1}

3 Integer32 ChecksumMode {0=Ignore, 1=Check, 2=Calculate}, see chapter 2.6

4-15 Integer32 Checksum The SHA-3-384 checksum with NIST padding, set zero before calculation.

16-17 Integer64 Date The date in 64 bit POSIX format

18 Integer32 - Must be 0

19 Integer32 Id A table ID given by the user

20-35 String Description A description string given by the user

36 Integer32 RowSize The number of words in a row

37-39 Integer32 - Must be 0

40
41
42
43

Integer32
Integer32
Float32
Float32

Dim1.Size
-
Dim1.StartValue
Dim1.Distance

The size of the table in the first dimension
Must be zero
The position of the first data point of this dimension
The distance between data points in this dimension

44
45
46
47

Integer32
Integer32
Float32
Float32

Dim2.Size
-
Dim2.StartValue
Dim2.Distance

The size of the table in the first dimension
Must be zero
The position of the first data point of this dimension
The distance between data points in this dimension

48
49
50
51

Integer32
Integer32
Float32
Float32

Dim3.Size
-
Dim3.StartValue
Dim3.Distance

The size of the table in the first dimension
Must be zero
The position of the first data point of this dimension
The distance between data points in this dimension

52-63 Integer32 - Must be 0

2.6 Checksum Calculation
A checksum may be attached to the header. This checksum is tested in the drive if ChecksumMode is set
to Check. If a file is transmitted to the drive with ChecksumMode = Calculate, the drive will change the
ChecksumMode to Check and then calculate the checksum itself. This is useful if the user does not want
to calculate the checksum himself. By reading back this file, he gets a file with a checksum value, and
the ChecksumMode = Check.

The checksum is calculated with the SHA-3-384 method. Before calculation, zero the checksum in the
header, add NIST-type of padding, then calculate the SHA3-384 hash of the file. Finally write it back into
the header.

AN124_Filesystem_EP010 2024-08-09 7 /11

https://triamec.com/

3 Software access
External software can access the filesystem using the IP-address shown in chapter 1. This is especially
useful if the PC is connected with the drive over its auxiliary Ethernet port. With a TCP connection to
port 80, external software can read and write files discussed in this document. The following code snip-
pets show how to read and write a file.

All possible files are listed using “GET /dir”.

3.1 Reading a file from the drive
Reading is done with a standard HTTP GET from the drive. To read the table “tables/small1.TAMtbl” use
“GET /tables/small1.TAMtbl”. The following samples read the table “small1” from the drive, if the drive
is connected using its AUTO-IP address 169.254.222.222.

using C#

var FilePath = new Uri("tables/small1.TAMtbl", UriKind.Relative); // URL to file

var baseAddress = new Uri("http://169.254.222.222/"); // drive URL

var client = new HttpClient { BaseAddress = baseAddress };

var response = new HttpResponseMessage(HttpStatusCode.Forbidden);

using (var request = new HttpRequestMessage() {

 RequestUri = FilePath,

 Method = HttpMethod.Get,

 }) {

 if (client.BaseAddress != null) {

 response = await client.SendAsync(request).ConfigureAwait(false);

 }

 }

 if (response.StatusCode == HttpStatusCode.OK) {

 using (var fileStream = await response.Content.ReadAsStreamAsync().ConfigureAwait(false)) {

 // ...add deserialize code here

 }

 }

using JavaScript

const fs = require('fs');

const axios = require('axios');

const FormData = require('form-data');

async function uploadFile(filePath, driveIP) {

 try {

 const data = await fs.promises.readFile(filePath);

 const formData = new FormData();

 formData.append('filename', 'tables/small1.TAMtbl');

 formData.append('filepath', data, { filename: 'anyname.bin' });

 const response = await axios.post('http://' + driveIP + '/put.html', formData, {

 headers: {

AN124_Filesystem_EP010 2024-08-09 8 /11

http://169.254.222.222/
https://triamec.com/

 ...formData.getHeaders(),

 'Content-Length': formData.getLengthSync()

 }

 });

 console.log('Response:', response.data);

 } catch (error) {

 console.error('Error uploading file:', error);

 }

}

uploadFile('dataRead.bin', '169.254.222.222');

3.2 Writing a file to the drive
Files are written using HTTP POST with a specially formatted MultipartForm object. It must contain a
string component "filename" and a stream component “filepath”. The following samples write a file
"sample.bin" to the drive table “small1”, if the drive is connected using its AUTO-IP address
169.254.222.222.

using C#

var targetName = "tables/small1.TAMtbl";

var source = new FileStream("sample.bin", FileMode.Open); // stream of sample.bin to be transfered

var uploadSite = new Uri("put.html", UriKind.Relative); // URL for file transfer

var baseAddress = new Uri("http://169.254.222.222/"); // drive URL

var client = new HttpClient { BaseAddress = baseAddress };

using (var content = new MultipartFormDataContent {

 { new StringContent(targetName), "filename" },

 { new StreamContent(source), "filepath" }

 })

using (var response = await client.PostAsync(uploadSite, content)

 .ConfigureAwait(continueOnCapturedContext: false))

{

 if (!response.IsSuccessStatusCode)

 {

 throw new HttpRequestException($"Transfer to device at {targetName} failed.
{response.ReasonPhrase}");

 }

}

using JavaScript

// Create a Blob from the binaryData ArrayBuffer

const blob = new Blob([binaryData], { type: 'application/octet-stream' });

// Create a FormData object and append the Blob to it

let formData = new FormData();

const tableSlot = 'tables/small1.TAMtbl';

formData.append('filename', tableSlot);

AN124_Filesystem_EP010 2024-08-09 9 /11

http://169.254.222.222/
https://triamec.com/

formData.append('filepath', blob);

// Use the Fetch API to send the FormData to the specified URL

const response = await fetch('http://169.254.222.222/put.html', {

 method: 'POST',

 body: formData,

});

if (response.ok) {

 console.log('Binary data sent successfully.');

}

else {

 throw new Error(`Failed to send binary data. Status: ${response.status}`);

}

AN124_Filesystem_EP010 2024-08-09 10 /11

https://triamec.com/

References
[1] “Servo Drive Setup Guide”, ServoDrive-SetupGuide_EP027.pdf, Triamec Motion AG, 2024.

Revision History

Version Date Editor Comment

001 2021-04-26 mvx First release

002 2021-09-07 dg renamed ColumnSize to RowSize

 003 2023-03-02 sm update template, fix header index 18 type, minor wording changes

004 2023-05-30 sm Introduce Table Type for firmware contained features.

005 2023-08-16 sm Fix index of Table Type.

006 2023-11-16 mvx New interface for reading data of a table in firmware 4.20

 007 2024-02-07 dg Fix table path: /table/small1.TAMtbl → /tables/small1.TAMtbl

 008 2024-03-11 ns Fix JavaScript spelling

 009 2024-04-11 dg Size of /table/large1.TAMtbl increased to 2’000’000

 010 2024-08-09 fm Small review and added reference

AN124_Filesystem_EP010 2024-08-09 11 /11

Copyright © 2024
Triamec Motion AG
All rights reserved.

Triamec Motion AG
Lindenstrasse 16
6340 Baar / Switzerland

Phone +41 41 747 4040
Email info@triamec.com
Web www.triamec.com

Disclaimer
This document contains proprietary information belonging to Triamec Motion AG and must not be dis-
tributed.

This document is delivered subject to the following conditions and restrictions:

 This document contains proprietary information belonging to Triamec Motion AG. Such information
is supplied solely for the purpose of assisting users of Triamec products.

 The text and graphics included in this manual are for the purpose of illustration and reference only.
The specifications on which they are based are subject to change without notice.

 Information in this document is subject to change without notice.

http://www.triamec.com/
mailto:info@triamec.com
https://triamec.com/

	Table of Contents
	1 File System
	1.1 Directory
	1.2 Transfer Files to Drive

	2 Tables
	2.1 TAM System Explorer Access
	Command
	Header
	State

	2.2 Tama Code Access
	2.3 File Server Access
	2.4 Structure
	2.5 Header
	2.6 Checksum Calculation

	3 Software access
	3.1 Reading a file from the drive
	using C#
	using JavaScript

	3.2 Writing a file to the drive
	using C#
	using JavaScript

	References
	Revision History

