
Encoder configuration for the TSD drive series

Application Note 107

Version Date Editor Comment

003 2016-03-04 mvx Concept based on the TSD series of drives

004 2016-04-19 mvx Add EncoderTopology selector (FW2077)

005 2017-03-21 mvx Add chapter on position latching , globalTrigger use and homing

006 2017-10-17 mvx Guide to CNC homing, info on commutation state for endat save

007 2018-10-24 dg Chapter about touch probe added

008 2018-12-20 mvx Chapters on position units and the BissB encoder.

Document AN107_Encoder_EP
Version 008
Source C:\svnroot\doc\ApplicationNotes\
Destination T:\doc\ApplicationNotes
Owner mvx

Copyright © 2018
Triamec Motion AG
All rights reserved.

Triamec Motion AG
Industriestrasse 49
6300 Zug / Switzerland

Phone +41 41 747 4040
Email info@triamec.com
Web www.triamec.com

Disclaimer
This document is delivered subject to the following conditions and restrictions:

 This document contains proprietary information belonging to Triamec Motion AG. Such information
is supplied solely for the purpose of assisting users of Triamec products.

 The text and graphics included in this manual are for the purpose of illustration and reference only.
The specifications on which they are based are subject to change without notice.

 Information in this document is subject to change without notice.

Table of Contents
1 Overview..2
2 Position Units...2
3 System Configuration...................................2
4 Encoder Type..3

4.1 Incremental RS422...............................3
4.2 Incremental TTL....................................3
4.3 Analog...3
4.4 AnalogEndat...4
4.5 DigitalEndat..4

4.6 DigitalBissB...4
5 Persistency...6

5.1 Procedure...6
5.2 Endat Flash Map...................................6

6 Position Latching..7
6.1 Register Interface.................................7
6.2 EtherCAT interface................................8
6.3 Timing considerations..........................9

7 Homing...10

2018-12-20

mailto:info@triamec.com
http://www.triamec.com/

7.1 Homing Method Immediate.................11
7.2 Homing Method AtPosition..................11
7.3 Homing Method Standard....................11
7.4 TwinCAT Homing with EtherCAT...........13
7.5 TwinCAT Homing with CNC...................13
7.6 TwinCAT Absolute Encoders with CNC. 14

8 TwinCAT interfaces: old generation drives...15
8.1 Fast Encoder activation........................15

8.2 Endat..15
9 Touch Probe Sequence (CNC Controlled).....16

9.1 PLC-Example...16
9.2 G-Code Example...................................19
9.3 Remarks..19

10 Tama Controlled Touch Probe Sequence.....20
10.1 Un-coupling and Coupling....................20

1 Overview
This application note mainly describes the encoder concept of the TSD series of Triamec Drives. For the
configuration of older generation drives using TwinCAT, see chapter 8.

2 Position Units
As of firmware 4.2.0 the units of an axis are specified using

Axes[].Parameters.PositionController.PositionUnit.

Possible settings are currently meters (m), millimeters (mm), radiants (rad) and degree (degree).
Changing this setting will only affect the display units in the TAM System Explorer and the conversion
factor between drive and EtherCAT. The real scale is not automatically changed and must be specified in
the encoder module using the pitch parameter. This must correspond to the position controller
parameters.

3 System Configuration
Hardware View: Up to four encoders can be connected to the hardware if a drive is equipped with two
encoder option modules. The drive input is named by the connector.

 X20 Standard encoder input for axis 0
 X21 Standard encoder input for axis 1
 X10 Option encoder input for axis 0 (options TOE1, TOE2)
 X11 Option encoder input for axis 1 (options TOE1, TOE2)

Software View: The dual loop concept allows two encoders feeding two position controllers for each
axis. Each axis i can be configured separately. The parameters of an encoder software module k and its
controller counterpart are at

 Axis[i].Parameters.PositionControllers.Encoders[k]
 Axis[i].Parameters.PositionControllers.Controllers[k]

The relationship between the hardware view and the software view is selected by a global
General.Parameters.EncoderTopology (outside of the axis) using the following table. The first row is
the default.

AN107_Encoder_EP008 2018-12-20 2/21

EncoderTopology Hardware  Axis / Encoder Notes

Standard

X20_Axis0Standard  Axes[0]/Encoders[0]
X21_Axis1Standard  Axes[0]/Encoders[1]
X21_Axis1Standard  Axes[1]/Encoders[0]
X20_Axis0Standard  Axes[1]/Encoders[1]

There are no encoder option modules. The
neighbor axis encoder is available as
encoders[1]

OptionA

X10_Axis0Option  Axes[0]/Encoders[0]
X20_Axis0Standard  Axes[0]/Encoders[1]
X11_Axis1Option  Axes[1]/Encoders[0]
X21_Axis1Standard  Axes[1]/Encoders[1]

The option modules are available as
Encoders[0], which is used for commutation.

OptionB

X20_Axis0Standard  Axes[0]/Encoders[0]
X10_Axis0Option  Axes[0]/Encoders[1]
X21_Axis1Standard  Axes[1]/Encoders[0]
X11_Axis1Option  Axes[1]/Encoders[1]

The option modules are available as
Encoders[1]. Commutation is based on the
standard encoders.

OptionC

X10_Axis0Option  Axes[0]/Encoders[0]
X20_AxisStandard  Axes[0]/Encoders[1]
X21_Axis1Standard  Axes[1]/Encoders[0]
X11_Axis1Option  Axes[1]/Encoders[1]

The option module of axis 0 is available as
Encoders[0], which is used for commutation.
Commutation of axis 1 is based on the
standard encoder.

Please note, that commutation is always based on PositionController.Encoders[0].

Each encoder is set to a mode type (Analog, Incremental...) using the selector
Parameters.PositionController.Encoders[].Type, see next chapter. There is a constraint for the
Standard encoderTopology configuration: The software parameters (including the type) may only be
configured one's per hardware module. Lets assume, for example,
Axes[0].PositionController.Encoders[1].type is set to Analog. Then the parameter
Axes[1].PositionController.Encoders[0].type must be set to None. Otherwise, the error
EncoderConfigurationError is thrown.

4 Encoder Type
The encoder type is specified with Parameters.PositionController.Encoders[].Type.

4.1 Incremental RS422
This type uses the complementary A, A, B, B inputs of the
encoder for line counting. See figure 1 for the positive counting
direction.

4.2 Incremental TTL
This type uses the single ended TTL inputs encIo0 and encIo1
for line counting. The direction is the same as in the RS422 case
when using encIo0 as A-A and encIo1 as B-B.

4.3 Analog
This type uses A, A, B, B as analog inputs

AN107_Encoder_EP008 2018-12-20 3/21

A-A

B- B

Figure 1: Positive counting direction for
incremental encoders.

A−A=V ss cos(φ)

B−B=V ss sin(φ)

φ=2π
position
pitch

with Vss=1.0V.

4.4 AnalogEndat
This type initializes the position using an Endat absolute encoder. After initialization the function is
identical to the “Analog” encoder type and uses the analog sine and cosine inputs for counting. The
initialization takes place during first commit:

 In a persistent system, commit is done after parameter load before starting any tama programs and
before responding to requests from a control system.

 Otherwise, the commit is done after loading the configuration.

Endat specific information is shown in Signals.PositionController.Encoder[].DigitalEncoder.

If two encoders are used for one axis, only one can be in the analogEndat mode: There is only one
pathPlanner for both encoders. SetPosition will set both encoders. Therefore it does not make sense to
have two encoders setting the initial position.

Usually an analog encoder has a higher resolution than its absolute Endat information. If the initial
position from Endat was just used as entry for setPosition, the position would be subject to the bad
endat resolution. Therefore, we use the endat information just for the line count and the analog sine
cosine information is used for the subResolution. See difference between Counts and CountsExt in
Signals.PositionControllers.Encoders[].DigitalEncoder.Counts is the raw position of the endat device in
number of counts. CountsExt is the extended (fractional) position in units of counts.

Please be aware that Endat positions use cos(-phi) and sin(-phi) and are therefore phase shifted by
180°. The signals Counts and CountsExt discussed before are based on this endat definition with endat
shift and endat count units. The position Encoders[].DigitalEncoder.Position which is (together with the
offset) loaded using setPosition uses the Analog Encoder Definition of the shift in the last chapter and
its units are based on the pitch setting.

See also chapter 5 below on saving the reference position in the encoder persistency flash.

See application note AN122 for commutation when persistency data are available.

4.5 DigitalEndat
This type reads the digital cyclic bus information into the encoder without using the analog sin/cos
inputs. Prefer analog or analogEndat if analog inputs are available.

4.6 DigitalBissB
This type reads the digital cyclic bus information into the encoder without using the analog sin/cos
inputs. Prefer analog if analog inputs are available.

Use the parameter dataFormat to specify the number of bits of the encoder: “12-24” denotes an
encoder with 12 bits multiturn and 24 bits single turn. Currently BissB encoders run at 5MHz and 20

AN107_Encoder_EP008 2018-12-20 4/21

kHz cyclic update rate. Contact Triamec Motion AG if your encoder requires different conditions.

The single turn setting (see above) corresponds to one motor turn. Use the pitch parameter to specify
the encoder scale in units of positionUnits per turn. Set

 Axes[].Parameters.Motor.EncoderCountsPerMotorReolution = 1

Example Axes[].Parameters.PositionController.PositionUnits = Degree
Axes[].Parameters.PositionController.Encoders[0].Pitch = 360
Specifies an axis scale in degrees without any gear in between.

AN107_Encoder_EP008 2018-12-20 5/21

5 Persistency
An absolute encoder (Endat) supplies an absolute position defined by the encoder manufacturer. This is
usually not the position required in the machine coordinate system. The machine manufacturer defines
the zero of each axis. This reference position of an axis is derived by a homing or calibration procedure
during machine setup at the machine manufacturer place. Then the position offset between absolute
encoder and machine coordinate system is stored.

5.1 Procedure
During setup of a machine, the drive parameters are loaded and made persistent. This drive
persistency does not contain axis specific offset positions because they may differ between different
machines of the same type.

After loading the drive parameters, the drive searches for encoders of absolute encoder type (Endat).
Since the encoder hardware does not contain offsets at first, it will show the error NoPersistencyData.
This error can be acknowledged and the machine manufacturer continues taking the reference position
and activating it using set position.

Now the manufacturer uses the command Save in Commands.PositionController.EncoderPersistency
to save the calibration offset (encoder persistency) and the commutation offset into the encoder
hardware. Please note that saving is only possible if the commutation state is valid. This means that the
axis can be enabled or not, but it must have been enabled ones before saving is possible.

There are some extended functions, which may be beneficial in special situations: With the command
Invalidate, the persistency data may be cleared. The operator will get the error NoPersistencyData
during next startup. The command Read reads the endat data into the DigitalEncoder register but does
not change the encoder position. With ReadAndActivate, the data is read and activated using
setPosition.

5.2 Endat Flash Map
The following background information is not necessary for machine manufacturers but may be
beneficial in special cases.

The position offset is stored in the OEM flash part of the endat encoder. It starts at the first available
memory location and spans a region of 10 registers of 16bits. It contains a checksum and a key word for
identification. Without this measure, a virgin flash could have been interpreted as containing
persistency data even though it was never saved.

AN107_Encoder_EP008 2018-12-20 6/21

6 Position Latching
Encoder positions can be latched by a
digital input trigger. Applications use this
feature for referencing (homing) or
measurement purposes. The position
latching takes place in the FPGA for
optimal timing and accuracy. We describe
the register interface (Chapter 6.1), the
EtherCAT interface (chapter 6.2) and the
timing.

6.1 Register Interface
The configuration of the latching modules
is done in
Axes[].Commands.PositionController. The
two modules “PositionLatchStandard” and
“PositionLatchOption” correspond to their
respective encoder connector with the
following registers (1)

 Source
Specifies the digital input trigger
source

 FallingEdge
FALSE is rising edge, TRUE is falling edge

 GlobalSource
Specifies a global trigger for an axis, which can be used by all modules for simultaneous triggering.

These settings are commands, i.e. they are not stored in the persistent parameter flash. Using the
latching module is illustrated for the standard encoder of an axis:

 Set Commands.PositionController.PositionLatchStandard.Enable to TRUE to start searching
 The signal Signals.PositionController.PositionLatchStandard.State (2)

changes from “Disabled” to “Preparing” and then stays on “Search” until the trigger is received.
 After latching, the position is saved to Signals.PositionController.PositionLatchStandard.Position and

the signal Signals.PositionController.PositionLatchStanard .State changes to “Found”.
 Set Commands.PositionController.PositionLatchStandard.Enable FALSE for a minimum time of

0.1ms.
 The signal Signals.PositionController.PositionLatchStandard.State

changes to “Disabled” and the module is ready for the next sequence.

1 Before firmware 2085, the PositionLatchSource and PositionLatchFalling where parameters of the encoder modules
which had to be commited and globalTrigger was not available.

2 Before firmware 2085, the state of a position latch unit was available as a boolean “positionLatchDone”.

AN107_Encoder_EP008 2018-12-20 7/21

Figure 2: Schematic of the position latch triggers and there
selectors for one axis.

Connector
index

encIn0
encIn1
encIn2
encIn3

Connector
index

encIn0
encIn1
encIn2
encIn3

axis0digIn1

S
o

ur
ce

G
lo

b
a

l
G

lo
b

a
l

other axis

EncIn3
EncIn2
EncIn1
EncIn0
Index

GlobalStandard
GlobalOption
GlobalStandardOtherAxis
GlobalOptionOtherAxis
Axis0DigIn1

S
o

ur
ce

EncIn3
EncIn2
EncIn1
EncIn0
Index

GlobalStandard
GlobalOption
GlobalStandardOtherAxis
GlobalOptionOtherAxis
Axis0DigIn1

S
ta

n
da

rd
 E

n
co

de
r

O
pt

io
n

 E
n

co
de

r

6.2 EtherCAT interface
With EtherCAT the above sequence can be controlled by direct register access as shown in the last
chapter. Alternatively, the TwinCAT touch probe module can be used.

The touch probe cyclic interface of an axis is activated using the slot mechanism of TwinCAT. Double
click the EtherCAT drive in TwinCAT. Go to the tab “Slots” and choose the axis. Choose “touch probe”
instead of “standard”. This will add the additional signals TouchProbeStatus (0x60b9),
TouchProbePosition1Pos (0x60BA) and TouchProbePosition1Neg (0x60bb). It also adds the command
word TouchProbeFunction (0x60b8). Activate the configuration.

In the PLC section, include the library “Tc2_MC2” and the following declarations

touch : MC_TouchProbe;
axis0 AT %I* : AXIS_REF;
trigger : TRIGGER_REF;

Then add the following code

axis0.ReadStatus();
trigger.EncoderID := 1; // 1..255
trigger.TouchProbe := TouchProbe1; // E_TouchProbe
trigger.SignalSource := SignalSource_DriveDefined; // E_SignalSource
trigger.Edge := RisingEdge; // E_SignalEdge, RisingEdge
trigger.Mode := TOUCHPROBEMODE_SINGLE; // E_TouchProbeMode
trigger.ModuloPositions := FALSE;
touch(Axis := axis0, TriggerInput := trigger);

Finally wire the input axis0 to the NCI module axis component MC.NCTOPLC_AXIS_REF_OLD3.

Limitations:

Only single capture mode is available.

Selection of the source:

The trigger source of the touch probe unit does not comply with CAN specifications. Use the (none-
persistent) register 0x23F4 for axis0 and 0x2BF4 for axis 1 instead. Use the EtherCAT startup list or write
the COE register from PLC code. The value of this register reflects the four selectors in Figure 2 and
configures standard and option encoder at ones. Calculate the sum of the following constants:

Source Standard encoder Option encoder

Index 0x0000’0000 0x0000’0000

EncIn0 0x0000’0002 0x0002’0000

EncIn1 0x0000’0003 0x0003’0000

EncIn2 0x0000’0004 0x0004’0000

EncIn3 0x0000’0005 0x0005’0000

GlobalTrigger of the standard encoder 0x0000’000A 0x000A’0000

Global trigger of the option encoder 0x0000’000B 0x000B’0000

AN107_Encoder_EP008 2018-12-20 8/21

GlobalTrigger of the standard encoder of the other axis 0x0000’000C 0x000C’0000

Global trigger of the option encoder of the other axis 0x0000’000D 0x000D’0000

Axis0 DigIn1 0x0000’000E 0x000E’0000

If a global trigger is chosen in the source table above, the global trigger input is selected as follows

GlobalTrigger Standard encoder Option encoder

Index 0x0000’0100 0x0010’0000

EncIn0 0x0000’0200 0x0020’0000

EncIn1 0x0000’0300 0x0030’0000

EncIn2 0x0000’0400 0x0040’0000

EncIn3 0x0000’0500 0x0050’0000

By adding the four values in these two tables, both encoders are set up and can than be used with the
touch probe function block from TwinCAT. Please note: If a global trigger of the other axis is chosen as
source, this global trigger must be set in the CAN register of the respective axis.

6.3 Timing considerations
The 24V digital inputs X30 and X31 are slow and not recommended for fast position latching. The
reaction time (jitter) is 100µs. Only the digital input AuxIn1 of axis 0 has a fast response time.

The fast digital TTL inputs encIo0 to encIo3 are available at every encoder connector. The timing
accuracy (jitter) is 0.2µs, dominated by the encoder path signal read. Besides of the accuracy there is
also a systematic delay. While the delay on the trigger input is small (0.01µs) there is a significant delay
of 7µs due to hardware and software filtering in the encoder path. This delay can be compensated by
taking into consideration the speed of the axis in the search phase.

AN107_Encoder_EP008 2018-12-20 9/21

7 Homing
This describes the homing module of the TSD series of drives. After a general introduction, we describe
the supported homing methods.

The homing consists of four phases

 The first search phase is typically used to move into a marker, but various triggers can be chosen.
 Then a relocate move is used to get to the position, where the next search should start.
 The second search phase typically searches for an encoderIndex, but various triggers can be chosen.
 The move to home phase moves the axis to its final position.

The homing parameters of an axis are at Axes[].Parameters.Homing

 Method The homing method
 FirstSearchMove This folders contains the parameters for the first search
 RelocateMove This folders contains the parameters for the relocate move
 SecondSearchMove This folders contains the parameters for the second search
 MoveToHomePositionThis folders contains the parameters for the final move to the home position

Please note that the home position is not the
referencePosition. The reference position is
the position the encoder is set to at the found
position of the second search move. The home
position is the position where the axis will
move to after successful homing. The home
position is a parameter which will be the same
for all machines of a series. The reference
position is a command value received from the
control system before homing and is typically
calibrated during machine assembly.

The folders with the homing phases “FirstSearch” and “SecondSearch” contain parameters

 EventInput The trigger input to be searched for
 ActiveLow Choose TRUE if the event is active low
 SignedMaxDistance The maximum distance a search will move if no trigger event is found.
 DynamicReduction Values smaller than 1.0 will reduce the pathplanner velocity settings.

The sign of “SignedMaxDistance” has a special meaning. If the trigger is not active before the move, the
axis will move into the direction indicated by the sign of this parameter. Otherwise, the direction will be
reversed.

The folder with the homing phase “relocate move” contains the same parameter “DynamicReduction“
plus

 Distance The signed distance to move.

The folder with the homing phase “moveToHome” contain the same DynamicReduction parameter plus

 Position The absolute position for the final move.

AN107_Encoder_EP008 2018-12-20 10/21

Figure 3: Difference between the reference position and the
home position.

before homing

after homing

Reference
Position

Home
Position

EncoderIndex

The homing commands of an axis are at Axes[].Commands.Homing

 Command Use Start to start homing, and
Stop to stop any homing ongoing and related moves

 TestNotEnabled This allows testing the homing triggers by manually moving the axis.
The states will behave as usual, but no motion commands are issued.

 ReferencePosition The reference position as received from the control system.

The homing signal of an axis is the homing state Axes[].Signals.General.HomingState. It indicates not
only the phases of a homing, but also homing errors.

7.1 Homing Method Immediate
This homing method sets Homing Done without any action. There is no set position taking place. Final
state is homingDone.

7.2 Homing Method AtPosition
This homing method sets the actual position to the commanded value referencePosition without any
move. Final state is homingDone.

7.3 Homing Method Standard
The first example is a move to the positive limit marker followed by a reverse move and then move
again to the positive direction to search the encoderIndex. Please note that the end position of the
relocate move is attained in the axis mode standstill.

The second example is a move to the positive end marker followed by a reverse relocation move and

AN107_Encoder_EP008 2018-12-20 11/21

Reference
Position

Home
Position

ActiveLow1=TRUE

Distance<0

P
o

si
tio

n
E

ve
n

t

FirstSearch RelocateM. SecondSearch MoveToH

signedMax-

Distance>0

event1
not active

active

V
e

lo
ci

ty

signedMax-

Distance>0

Event2
active

ActiveLow2=FALSE

then continue in the negative direction to search the encoderIndex. Since the relocation move and the
secondSearch move are into the same direction, the axis will not stop in between for optimal motion
behaviour. For technical reasons, the relocation move is a continuous move, not a discrete move.

The third sample was obtained with the same parameters as the second sample. This time the marker
was already occupied when starting. Therefore the first search moves into the opposite direction.

AN107_Encoder_EP008 2018-12-20 12/21

Reference
Position

Home
Position

ActiveLow1=TRUE

Distance<0

P
o

si
tio

n
E

ve
n

t

FirstSearch RelocateM. SecondSearch MoveToH

signedMax-

Distance>0

event1
not active

active

V
e

lo
ci

ty

signedMax-
Distance<0

Event2
active

ActiveLow2=FALSE

Reference
Position

Home
Position

ActiveLow1=TRUE

Distance<0

P
o

si
tio

n
E

ve
nt

FirstSearch RelocateM. SecondSearch MoveToH

signedMax-Distance>0

event1
active

not active

V
e

lo
ci

ty

signedMax-

Distance>0

Event2
active

ActiveLow2=FALSE

7.4 TwinCAT Homing with EtherCAT
The reference position can be setup as shown in the following figure.

7.5 TwinCAT Homing with CNC
To setup homing with the TwinCAT CNC module, make sure the cyclic data of the drive contain the
objects 0x6060 and 0x6061 (Mode of operation and mode of operation display). This is standard with
the ESI file Triamec1.1.xml and newer as delivered with the sample code package 1.1.1.

The parameter list of the CNC axis module must contain the following entries for correct homing
behavior:

kenngr.device_id 8 (turn off the target reached check before homing)
kenngr.set_refpos_mode ABSOLUT (P-AXIS-00278 : Modes for setting the homing pos)
kenngr.set_refpos_offset 0 (P-AXIS-00279 : [0.1um] or [10-4degree] Offset
kenngr.homing_type DRIVE_CONTROLLED (P-AXIS-00299 : Homing type

The homing sequence is then started using the G-code G74. The following sample program starts
homing of Z first. When finished homing of X and Y start together:

G74 Z1 X2 Y2

The position of the reference marker 0x23EE (axis0) and 0x2BEE (axis1) may vary from machine to
machine due to calibration considerations. In the sample codes, this position is set to 0.0 in the startup
list. The type is a double with metric units (m or rad) as used during drive setup. It might be
overwritten by COE register write commands as described in the “Triamec TwinCAT EtherCAT Quick
Startup Guide”.

AN107_Encoder_EP008 2018-12-20 13/21

7.6 TwinCAT Absolute Encoders with CNC
With the following entry in the axis data, the CNC immediately sets reference done without the need
for homing:

kenngr.abs_pos_gueltig 1 (P-AXIS-00014 : Absolute measurement system)

AN107_Encoder_EP008 2018-12-20 14/21

8 TwinCAT interfaces: old generation drives
This describes TwinCAT Encoder interfaces for TSx51 and TSPxxx types of drives.

8.1 Fast Encoder activation
To activate the fast encoder mode, add the following declaration to MAIN_SLOW

triamec\TcHmiPro\TcApplication\bin\Debug\System

encoderConfig : TL_EncoderConfig;

and its code

encoderConfig.Execute := gAxis[4].ready;
encoderConfig.station := gAxis[4].MC_axis.station;
encoderConfig.fastencoder := TRUE;
encoderConfig(Trialink:=Trialink);

be aware, that using fast encoder requires the extension TAD5 be mounted to the analog encoder
input.

8.2 Endat
To activate Endat 2.1 for axis 1, add this declaration and code to MAIN_SLOW

Endat : TL_EndatActivate

and

Endat.Execute := gAxis[1].ready;
Endat.Offset := 0;
Endat(axis:=gAxis[1].MC_axis, Trialink:=Trialink);

Note that this requires drive units in m or radian.

AN107_Encoder_EP008 2018-12-20 15/21

9 Touch Probe Sequence (CNC Controlled)
This section describes how the touch probe functionality can be implemented in the PLC code and
executed by G code. With this example the move of the axis during touchdown is controlled by the
CNC. Therefore the axis is always in coupled state and no synchronization of the G code interpreter, the
NC interpolation and the actual position is required to recouple the axis.

See chapter 10 for more information about an advanced touchdown detection controlled by a Tama
program.

9.1 PLC-Example

Channel Parameters

In this example, the M-funcitons M200 and M201 are used for the synchronization between G-code
and PLC. The synchronization type (P-CHAN-00041) of the M-functions is set to MVS_SVS =
0x00000002: “Output of M-function to PLC before motion block, Synchronization before motion block”:

m_synch[200] 0x00000002 (MVS_SVS Touch Probe init)

m_synch[201] 0x00000002 (MVS_SVS Touch Probe done)

Axis Parameters

All axes involved in the measuring must be identified as a measuring axis (P-AXIS-00118):

kenngr.messachse 1 # Massachse

Measurement method (P-AXIS-00516) defines the source of the measuring signal.

kenngr.measure.signal PLC

With this setting the touch move stops if all of the measuring axes detect touchdown. Therefore
the probing signal has to be applied to all measurement axis.

Implementation

The following global constants are involved in the example:
VAR_GLOBAL

...

Trialink : TL_Trialink2;

gAxis : ARRAY [1..N_AXIS] OF TL_AxisSlow;

CNCSystem : ST_CncSystem;

gTouchdown : BOOL;

...

END_VAR

The main functionality is implemented in the following sample code “FB_TouchProbe”. With this
example axis 1 is used as measurement axis (idxMAxis:= 1) and AuxIn1 as input for the probe signal.

VAR_INPUT

Execute : BOOL; // set Execute FALSE and TRUE to reset

AN107_Encoder_EP008 2018-12-20 16/21

END_VAR

VAR_OUTPUT

Error : BOOL; // error flag

ErrorId : UDINT; // error id

END_VAR

VAR

stateTouchProbe : USINT; // state machine state

positionLatch : TL_PositionLatch; // used for TS drive-generation

positionLatchReg2 : TL_PositionLatchReg2;// used for TSD drive-generation

iAxis : USINT; // axis counter

executePositionLatch : BOOL; // execute position latch

positionLatchSearch : BOOL; // flag is set if latching is ready

positionLatchDone : BOOL; // flag is set if latching is done

positionLatchPosition : LREAL; // position when touch down was detected - valid if
// positionLatchDone

END_VAR

VAR CONSTANT

idxMAxis : USINT := 1; // index of measurement axis

END_VAR

// call position latch function block

// depending on the drive generation a different function block is used

IF gAxis[idxMAxis].MC_axis.register2.supported THEN // TSD drive generation

positionLatchReg2(Execute:=executePositionLatch, Trialink:=Trialink, axis:=
gAxis[idxMAxis].MC_axis);

Error:= positionLatchReg2.Error;

ErrorId:= positionLatchReg2.ErrorID;

gTouchdown:= positionLatchReg2.Found;

positionLatchSearch:= positionLatchReg2.Search;

positionLatchDone:= positionLatchReg2.Done;

positionLatchPosition:= positionLatchReg2.Position;

ELSE // TS drive generation

positionLatch(Execute:=executePositionLatch, Trialink:=Trialink, axis:= gAxis[idxMAxis].MC_axis);

Error:= positionLatch.Error;

ErrorId:= positionLatch.ErrorID;

gTouchdown:= positionLatch.Found;

positionLatchSearch:= positionLatch.Search;

positionLatchDone:= positionLatch.Done;

positionLatchPosition:= positionLatch.Position;

END_IF

// state machine

CASE stateTouchProbe OF

0: // idle - wait for M-function

IF NOT Error AND CNCSystem.Channel[CHAN].M[200].bState_rw THEN

// setup and execute position latch

IF gAxis[idxMAxis].MC_axis.register2.supported THEN // TSD drive generation

positionLatchReg2.Source:= TL_ConstAxisParPosCtrlEncLatchSrc.AuxIn1;

positionLatchReg2.EdgeFalling:= FALSE;

AN107_Encoder_EP008 2018-12-20 17/21

ELSE // TS drive generation

positionLatch.Source:= TL_Config.ReferenceFirstInput.AuxIn1;

positionLatch.EdgeFalling:= FALSE;

END_IF

executePositionLatch:= TRUE;

stateTouchProbe:= stateTouchProbe+1;

END_IF

1: // wait until position latch is ready

IF positionLatchSearch THEN

// clear M-function

CNCSystem.Channel[CHAN].M[200].bState_rw:= FALSE;

stateTouchProbe:= stateTouchProbe+1;

ELSIF Error OR NOT Execute THEN

stateTouchProbe:= 100;

END_IF

2: // wait until G310 is finished - indicated with M201

IF CNCSystem.Channel[CHAN].M[201].bState_rw THEN

// if this state is reached, G310 move generated a position latch or reached end of move

IF positionLatchDone THEN

// position latched - evaluate position

// ...

stateTouchProbe:= 100;

ELSE

// end of move reached - reset

executePositionLatch:=FALSE;

stateTouchProbe:= 100;

END_IF

ELSIF Error OR NOT Execute THEN

stateTouchProbe:= 100;

END_IF

100: // reset and clean up

IF NOT Error OR NOT Execute THEN

CNCSystem.Channel[CHAN].M[200].bState_rw := FALSE;

CNCSystem.Channel[CHAN].M[201].bState_rw := FALSE;

executePositionLatch:=FALSE;

stateTouchProbe:= 0;

END_IF

ELSE

stateTouchProbe := 0;

END_CASE

To provide the probing signal from the PLC to the CNC the HLI is used. Therefore the following code is
added to the TL_CNC_AX function block. It is important to apply the probing signal to all measurement
axes.

VAR

...

pAxis : POINTER TO High_Level_Interface_Ax;

...

END_VAR

AN107_Encoder_EP008 2018-12-20 18/21

pAxis^.lr_mc_control.probing_signal.enable_w:= TRUE;

pAxis^.lr_mc_control.probing_signal.command_w:= gTouchdown;

The touch probe function block is executed if the following command is called with the TASK_SLOW.
VAR

...

touchProbe : FB_TouchProbe;

...

END_VAR

// Execute toch probe state machine

touchProbe(Execute:=Enabled);

9.2 G-Code Example

The following G code example uses the G310 command to execute the touch probe move (see
Programming Manual 4.1.10.5 from ISG). The M-function M200 is used to prepare the drive for
the position latch and M201 is used to evaluate the result of the measurement by the PLC .

; do something
...
...

; move to start position

G1 X100 Y200 Z10

; initialize touchdown detection
M200 ; execute PLC code to prepare position latch

; execute touch probe move
#MEAS MODE[5] ; measurement type is 5 (P-CHAN-00057)
G310 G1 Z-1 $GOTO N10: ; start touch probe move

; no touchdown detected during G310 move
M201 ; execute user specific code to reset
...
...
$GOTO N20:

; touchdown detected during G310 move
N10:
M201 ; execute PLC code to evaluate the measurement

; continue

N20:
...
...

9.3 Remarks

• If the axis parameter kenngr.measure.signal is set to PLC_FIRST_EVENT, the implementation

AN107_Encoder_EP008 2018-12-20 19/21

would be simplified as the probing signal just has to be applied to one of the measuring
axes to stop the move. But if PLC_FIRST_EVENT is used, a reset after the search move
causes a 20s delay because of a bug in the ISG library. Therefore PLC_FIRST_EVENT should
not be used.

10 Tama Controlled Touch Probe Sequence
This section covers some aspects of the touch probe functionality if the touchdown causes the axis to
release the coupling. This is for example the case, if a stop-command is executed by the Tama program
at touchdown.

In this case synchronization of the G code interpreter, the NC interpolation and the actual position is
required to recouple the axis.

10.1 Un-coupling and Coupling
To avoid an error if the coupling of an axis is canceled while an NC program is running and to re-couple
the axis, the following sequence has to be executed:

Preparation

• To synchronize G-code interpreter and NC-intepolator the following command has to be added to the G-
code after touchdown detection.

#CHANNEL INIT [ACTPOS]

• The following axis-parameter has to be configured:

kenngr.tracking_offset_remain = 1

• In normal case TorquePermission will be reset if the coupling is broken.

 pAxis^.lr_mc_control.torque_permission.command_w:= TorquePermission

Therefore the command TorquePermission has to be overridden before the coupling will be broken. E.g.

TorquePermission:= axes[iAxis].coupled OR gSimulate OR overrideTorquePermission;

• The command

pAxis^.lr_mc_control.follow_up.command_w := AxisTracking

must remain TRUE until CNC has stopped, override of the follow_me state is required. E.g.:

AxisTracking:= axes[iAxis].followMe AND NOT executeTouchdown AND NOT (gSimulate AND enable)
OR overrideAxisTracking;

• To synchronize the actual position with the NC-interpolator, the NC has to be set to follow up mode. E.g.:

gCncAx[iAxis].AxisTracking:= axes[iAxis].followMe AND NOT executeTouchdown AND NOT (gSimulate
AND enable) OR overrideAxisTracking;

Sequence

• Wait until the CNC request the preparation of the touch probe move by a M-function.

• Set executeTouchdown to TRUE and prepare the touch probe move.

AN107_Encoder_EP008 2018-12-20 20/21

• When the touch probe move is ready, acknowledge the M-function so the CNC can execute the touch
probe move (e.g. G310) and set overrideTorquePermission to TRUE.

• The touchdown signal has to be provided to the CNC.

• Wait until G310 move is done which is indicated by the CNC with an other M-function.

• If no touchdown is detected, the sequence is finished and executeTouchdown and
overrideTorquePermission has to be set to FALSE and the the M-function acknowledged and the
sequence is done in this case.

• If touchdown is detected, overrideAxisTracking has to be set to TRUE.

• Wait until all axes are in tracking mode (follow up mode).

• Set overrideAxisTracking to FALSE and re-couplele the axes by reactivate the coupling by setting the
couple command from FALSE to TRUE;

• Wait until all axes are coupled.

• Set executeTouchdown and overrideAxisTracking to FALSE and acknowledge the M-function.

AN107_Encoder_EP008 2018-12-20 21/21

	1 Overview
	2 Position Units
	3 System Configuration
	4 Encoder Type
	4.1 Incremental RS422
	4.2 Incremental TTL
	4.3 Analog
	4.4 AnalogEndat
	4.5 DigitalEndat
	4.6 DigitalBissB

	5 Persistency
	5.1 Procedure
	5.2 Endat Flash Map

	6 Position Latching
	6.1 Register Interface
	6.2 EtherCAT interface
	6.3 Timing considerations

	7 Homing
	7.1 Homing Method Immediate
	7.2 Homing Method AtPosition
	7.3 Homing Method Standard
	7.4 TwinCAT Homing with EtherCAT
	7.5 TwinCAT Homing with CNC
	7.6 TwinCAT Absolute Encoders with CNC

	8 TwinCAT interfaces: old generation drives
	8.1 Fast Encoder activation
	8.2 Endat

	9 Touch Probe Sequence (CNC Controlled)
	9.1 PLC-Example
	Channel Parameters
	Axis Parameters
	Implementation

	9.2 G-Code Example
	9.3 Remarks

	10 Tama Controlled Touch Probe Sequence
	10.1 Un-coupling and Coupling
	Preparation
	Sequence

